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Abstract 
 

Scattering center extraction for radar 
targets is strongly related to high-reso-
lution parameter estimation.  

In this paper, we propose the use of 
a decimative spectrum estimation me-
thod (DESED) for the estimation of the 
parameters of a synthetic radar signal. 
DESED is compared to two variants of 
the widely applied root-MUSIC algo-
rithm, in terms of range and amplitude 
estimation errors.  

The proposed method outperforms 
root-MUSIC with modified spatial smoo-
thing pre-processing, for both well-se-
parated and closely spaced point scat-
terers. Additionally, it appears to be 
slightly more accurate than root-MUSIC 
with decimation, especially for low sig-
nal-to-noise ratio and in the case of 
well-separated point scatterers.  
 

1. Introduction 
 
Parameter estimation is a funda-

mental field of signal processing. Two 
main approaches are followed: Bayes 
estimation which is based on a priori 
knowledge about the examined signal 
(probability distribution functions of pa-
rameters), and maximum likelihood 
(ML) estimation which maximizes a like-
lihood function that depends on signal 
parameters. Algorithms based on sin-
gular value decomposition (SVD) have 
been proposed to solve the parameter 

estimation problem [1]. With the recent 
advance of digital signal processors 
(DSP) and personal computers, moder-
ately sized SVD analysis (square matrix 
order of 50-70) has become feasible 
and computationally efficient software 
implementations are available. For this 
reason, parameter estimation methods 
that embody SVD appear to be appeal-
ing, resulting in estimation accuracy at 
the cost of additional computational 
burden. 

High-resolution radar imaging is per-
formed with the use of spectrum esti-
mation methods [2], [3]. Parametric 
methods are of special interest, since 
they employ a parametric model to ac-
curately describe the signal segment 
under spectral analysis. A parameter 
vector has to be estimated before the 
computation of the signal’s spectral 
content. Thus, parameter estimation is 
highly related to radar imaging, and is a 
primary step of the whole process. 

Decimative spectrum estimation 
constitutes a very interesting field of 
signal processing research [4], [5], [6], 
compared to the classical methods that 
were proposed a few decades ago. De-
cimation improves resolution capability 
of a frequency estimation method. In 
[5], two superresolution subspace me-
thods, namely MUSIC and ESPRIT, are 
shown to provide more accurate fre-
quency estimates when data decima-
tion is applied. Furthermore, in [4] it is 
pointed out that these methods impose 
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a constraint on the model order with re-
spect to the decimation factor, resulting 
in reduced efficiency in case of an 
overdetermined model.  

In this paper, we propose the use of 
a decimative spectrum estimation 
method, namely DESED [4], for esti-
mating the parameters of a radar signal 
model, which is based on the geomet-
rical theory of diffraction (GTD). The 
adopted model has been proved to per-
form accurate modeling of the 
backscattered field for a wide range of 
scatterers [7]. Therefore, using GTD-
based model for the description of the 
received frequency-domain samples of 
a stepped frequency (SF) radar wave-
form is reasonable. 

DESED method makes use of deci-
mation and SVD, exploits all data avail-
able, and does not impose any con-
straint on the decimation factor and the 
model order. Frequencies, dam-ping 
factors and complex amplitudes of the 
damped exponential (DE) signal model 
are estimated by DESED. In case of 
radar scattering data, radial locations, 
geometry parameters and scattering 
amplitudes can be respe-ctively derived 
through mathematical expressions re-
lating DE and GTD models. 

The remainder of the paper is orga-
nized as follows. Section 2 briefly delin-
eates the GTD-based parametric model 
for radar scattering, while Section 3 
provides the theoretical background of 
the DESED method. Section 4 presents 
the simulation results obtained by 
DESED method and two 
superresolution techniques, with re-
spect to the estimation of the radar sig-
nal parameters. Namely two variants of 
the root-MUSIC algorithm are com-
pared to DESED method, and useful 
conclusions are drawn in Section 5. 

 
2. Scattering Model 

 
Radar targets can be adequately 

characterized by a small number of 

scattering centers, in the high-frequen-
cy limit. The GTD-based model [7], 
which is used in the present study, pro-
vides a parametric description of the 
measured scattering behavior of a ra-
dar target. Its main advantage is that it 
embodies a parameter that characteriz-
es the geometry of each scattering cen-
ter. Its accuracy is attributed to its close 
relation with the physics of electromag-
netic scattering. As stated in [7], the 
GTD-based model describes the fre-
quency dependence of the scattering 
data more accurately than the DE mod-
el. Especially for large relative radar 
bandwidths, the DE model fails to satis-
factorily represent canonical scattering 
mechanisms and results in worse scat-
tering center resolution than the GTD 
model. 

The GTD model equation for the 
backscattered field of a perfectly con-
ducting target is: 
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where f  denotes the radar frequency, 

M  is the number of scattering centers, 

iA , i  and ir  symbolize the scattering 

amplitude, the geometry parameter and 
the range position of the ith scattering 

center, cf  is the center frequency, and 

c  is the speed of light. Table 1 summa-
rizes the geometry parameters for a 
number of canonical scattering geome-
tries. 

In case of SF waveform, the N  fre-

quencies spanning the utilized radar 
bandwidth are given by: 
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where N  is assumed to be odd in order 

to provide symmetry around the center 

frequency, and f  is the chosen fre-

quency step. 
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The GTD model can precisely de-
scribe various scattering mechanisms. 
In [7], edge and corner diffractions, as 
well as reflection mechanisms from 
three canonical surfaces (sphere, cylin-
der at broadside and flat plate), are 
shown to be in accordance to the GTD 
model. Thus, it stands to reason that a 
radar target can be considered as a col-
lection of several different scattering 
geometries, as those cited in Table 1.  

 
Table 1. Geometry parameters for canonical 

scattering geometries 
 

 
Example scattering geometries 

 

Geometry 
parameter 

value 

corner diffraction – 1 

edge diffraction – ½ 

ideal point scatterer; doubly 
curved surface reflection; 
straight edge specular 

 
0 

singly curved surface reflection ½ 

flat plate at broadside; dihedral 1 

 
3. Proposed Method 

 
Decimative spectrum estimation by a 

factor of D  (DESED) has been intro-
duced in [4]. Frequencies and damping 
factors are estimated both in least 
squares (LS) and total least squares 
(TLS) sense. Amplitude estimation is 
accomplished in LS sense, by substitut-
ing frequency and damping factor esti-
mates in the model equation for the 
noiseless signal.  

DESED assumes that the spectrally 
analyzed signal is represented by the 
generalized sinusoidal (also known as 
damped exponential) model: 
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(3)  

where p  is the model order, 
i

a , 
i
 , 

i
d  

and 
i

f  denote the amplitude, phase, 

damping factor and frequency of the ith 

sinusoid, and N  is the number of data 

samples. Equation (3) describes the 
noiseless signal under spectral analy-
sis. Nonetheless, noisy data measure-
ments are encountered in practical ap-
plications, and the noise is usually as-
sumed to be additive white Gaussian 
(AWGN).  

The algorithmic steps of the LS-
DESED method are the following: 

 

Step 1:  Computation of the Hankel 

matrix S  from the N  data 

points of the examined sig-

nal  ns , using equation (3). 

The Hankel matrix is formu-

lated as follows: 
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Step 2:  Derivation of the decimated 

versions of the Hankel ma-

trix, 
D

S


 by deleting the top 

D  rows of S , and 
D

S


 by 

deleting the bottom D  rows 

of S . 

Step 3:  SVD decomposition of ma-

trix 
D

S


, resulting in 

H

DDDD
VUS


 , and trun-

cation to order p , by retain-

ing only the p  largest sin-

gular values in matrix 
D

  

and only the first p  col-

umns of matrices 
D

U


 and 

D
V


. The resulting matrix is 

given by: 

  

     trunc trunc

D D

Htrunc trunc

D D
S U V
  

      (5) 

 

Step 4:  Computation of the trunca-

ted SVD solution of equa-

tion 
DD

SSX


  in LS 
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sense, where X  is an 

 DL -order matrix: 

 

                     
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where 
†

A  denotes the 
pseudo-inverse of a matrix 
A . 

Step 5:   Estimation of frequencies 

if  and damping factors id  

( pi ,,1 ) through the p  

largest eigenvalues of ma-

trix X , which are proven in 

[4] to be equal to the deci-

mated signal pole estimates 
D

iz . Note from equation (3) 

that the signal poles are 

given by 
 ii fjd

i ez
2

 . 

Step 6:   Estimation of amplitudes ia  

and phases i  ( pi ,,1 ) 

by finding a LS solution to 

equation (3), with iz  re-

placed by the respective es-

timates of the previous step 

and  ns  being the noisy 

measured data. 
 

The only constraints set by DESED 
concern the dimensions of the Hankel 
matrix and its decimated versions. The-
se are: 

 

                  p L D M                    (7)   

                   1L M N                      (8) 
 

It worths mentioning that the best re-
sults of DESED come from decimated 
Hankel matrices as square as possible 
( MDL  ).  

 
4. Simulation Results 

 

In our simulations, we assume that 
the radar target consists of ideal point 
scatterers, and for this reason we simu-
late the GTD model with zero-valued 
geometry parameters. 

LS-DESED method and two variants 
of the root-MUSIC algorithm, with modi-
fied spatial smoothing pre-processing 
(MSSP) [8], and with decimation [5], 
have been tested for two simulation 
scenarios. The first simulation scenario 
involves well-separated point scatterers 
(five distinct radial positions), whereas 
the second scenario includes two scat-
terers separated in range by 1

3  of the 

Fourier bin r . All scattering amplitu-

des are set to unity. 
Choosing the radar bandwidth 

400B MHz  and the center frequency 

9cf GHz , the scatterers’ separation is 

calculated:   3
2

0.125c
B

r m  . The 

relative radar bandwidth takes the value 

of 0.044
c

B f   , which is small 

enough to justify the assumption that 
the DE model approximates the GTD 
model. The radar frequency step is set 

to 2MHzf  , resulting in a total of 

201N   frequency-domain data samples. 

In view of equations (1) and (3), tak-
ing into account the assumption of 
small relative bandwidth, we can easily 
deduce the mathematical relationship 
between the frequency estimates of the 
DE model and the range estimates of 
the GTD model: 
 

                      
2
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i

c f
r

f
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Average RMS values of the range 
and amplitude estimation errors have 
been derived for the LS-DESED and 
the two root-MUSIC variants, for a total 
of 100 Monte-Carlo trials. The data 
snapshot length for the root-MUSIC 
techniques is selected to be 40m  , 

providing a satisfactory tradeoff bet-
ween frequency resolution and accura-
cy in the covariance matrix estimate. 
Decimation factor D  takes two values, 
2 and 3, for the two techniques that use 
decimation. 
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Figs. 1 and 2 graphically depict simu-
lation results in the case of well-sepa-
rated scatterers, for signal-to-noise ratio 
(SNR) ranging from 5 to 40 dB. For the 
second simulation scenario, we present 
the respective graphs for range esti-
mates in Fig. 3. Table 2 displays the 
average range estimation errors for the 
forth and the fifth point scatterer, which 

are separated by 3r . Only the two 

decimative methods are compared, for 
decimation factor of 3. 

As we can observe from Figs. 1 and 
3, the DESED method outperforms 
root-MUSIC with MSSP, in terms of 
range estimates. In the case of closely 
spaced scatterers, the proposed meth-
od breaks down at an average SNR 
value of 15 dB, whereas the root-
MUSIC with MSSP is already dete-
riorated at 25 dB. All three figures indi-
cate that the two decimative methods 
exhibit similar performance in terms of 
range and amplitude estimates. DESED 
appears to be slightly better than root-
MUSIC with decimation, and both tech-
niques provide increased resolution 
compared to the root-MUSIC with 
MSSP. Furthermore, it is obvious from 
these results that negligible estimation 
accuracy can be gained by increasing 
the decimation factor from 2 to 3. This 
can be attributed to the relatively short 
data length. 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1. Average RMS range estimation  
error versus average SNR for well-separated 

point scatterers 

  
 

Figure 2. Average RMS amplitude estimation 
error versus average SNR for well-separated 

point scatterers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Average RMS range estimation er-
ror versus average SNR for closely spaced 

point scatterers 

 
 

Table 2. average range estimation errors for 
two closely spaced point scatterers 

 
 

SNR 

(dB) 

Average range estimation error (m) 

Forth scatterer Fifth scatterer 

DESED 

(D = 3) 

root-

MUSIC  

(D = 3) 

DESED 

(D = 3) 

root-

MUSIC 

(D = 3) 

5 1.0930 1.0468 1.6454 1.7395 

10 1.1503 1.0103 1.5067 1.9683 

15 0.9613 0.9118 1.6680 1.8995 

20 0.2492 0.7518 0.3966 0.8590 

25 0.0331 0.0601 0.0388 0.0393 

30 0.0187 0.0232 0.0210 0.0260 

35 0.0107 0.0114 0.0105 0.0137 

40 0.0065 0.0088 0.0063 0.0087 
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5. Conclusions 

 
In this paper, we have proposed the 

use of a decimative spectrum estima-
tion method, named DESED, for the es-
timation of the parameters of a synthet-
ic radar signal. The proposed method is 
much more accurate than the classical 
root-MUSIC algorithm, in terms of range 
and amplitude estimates. Simulation 
results for both well-separated and 
closely spaced point scatterers reveal 
slightly better performance than the 
root-MUSIC method that uses de-
cimation. 
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