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Abstract 
 

In this paper certain aspects are 
considered of the motion in live tissues 
of ions under influence of an electro-
magnetic field. Some results of com-
puter simulation of space configuration 
of low frequency magnetic field around 
the human body is presented, also. 

 

Introduction 
 
The problem that presents itself is 

that of solving the equations of motions 
given in relativistic form, namely 
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The problem becomes, in principle, 

straightforward if it be assumed that E , 

B appearing in the right-hand side of (1) 
is a given field; the difficulties are then 
of purely technical kind that can also 
arise in traditional particle mechanical 
forces. The assumption is often a legi-
timate approximation, and the most of 
the work presented here is in this con-
text. In fact, however, the charge itself 
also contributes to the electromagnetic 
field, and its contribution depends on its 
motion. The inclusion of this “self-force” 
presents quite fundamental difficulties 
because of the infinities associated with 
the concept of a point charge. Attempts 
to describe the motion of an electron 

can perhaps be classified in terms of 
the following alternatives (a) abandon 
the idea that the electron is a point 
charge, and give it some intrnal structu-
re; (b) introduse into classical mathe-
matical framework some formalism that 
succeeds in discarding the infinites; (c) 
abandon the idea that the electron can 
be described in any fundamental way 
by classical theory, and insist that ap-
peal be made to quantum laws. The 
procedure (b) has been given a good 
deal of attention, and has led to an 
equation of motion which at least in cer-
tain contexts is acceptable theoretically 
and is in general agreement with prac-
tice. A derivation of this equation is gi-
ven later in paper. Any discussion of 
alternatives(a) and (c) is outside the 
scope of this paper. 

 
1. Equation of motion 
 

In attempting to solve (1) it may help-
ful to make use of the associated en-
ergy equation 
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If the electric field is purely static, so 

that E grad  , this gives 
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In the important special case 

constvЕ 


0 . Since a time-varying 
magnetic field cannot exist without an 
associated electric field. When  

v = const v  is along the principal 
normal to the trajectory and of magni-
tude  

2

p

v
p

, where pp  is the principal ra-

dius of curvature; hence 
 

       

 
0

2

2sin 1
p

m v
p

veB
c







,         (4) 

 

where   is the angle between B  and v  

,commonly called the pitch angle. 
Often it is not necessary to take ac-

count of relativistic effects, and the 
equations of motions and energy equa-
tion can then taken as 
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It may be noted that in the case 

0E  , 

Where the field is purely magne-
tostatic, the relativistic equations are 
the same as the non-relativistic, except 
only that m in the latter is replaced by 
the constant 
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 It is well known that the equations of 
motion can be cast into two alternative 
forms, familiar in classical mechanics 
as Lagrangian and Hamiltonian forms. 
In the present calculations no extensive 
use is made of these forms, but it is 
convenient to state theme here. In the 
non-relativistic treatment the usual form 
of Lagrange`s equations is equivalent 
to (5) if the Lagrangian is taken as 
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where  
  is scalar potentials of the electro-

magnetic field 

A


 is vector potentials of the electro-
magnetic fields. 

Likewise the usual form of Hamilton’s 
equations is equivalent to (5) if the 
Hamiltonian is taken as 
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where 

p mv eA    

is generalized momentum. 
To recapture the relativistic equation 

(1) the Llagrangian has to be  
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The corresponding relativistic Hamil-

tonian is 
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in what follows consideration is given 
first to exact solution of (5) for some 
simple special cases, starting with uni-
form and constant  
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2. Non-relativistic motion  
         in simple in live tissues 

 
2.1. Uniform static fields 
 

When both E and B  constant in ti-
me and uniform in space, that is, 
each vector always and everywhere 
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has the same magnitude and same 
direction, the full solution in the non-
relativistic approximation is easily 
obtained. 

First it is noted that in a uniform 

electrostatic field E , with no magnet-
ic field, the particle simply travels in 
a straight line with constant acceler-

ation e E /m. 
Next, motion in a uniform magneto-

static field B ,with no electric field, is 

considered. The speed v  is then con-

stant; so is v ,since the force is at right 

angles to B ,and so also therefore is the 

magnitude v of v ,where suffices  

and   are used to denote components 

parallel and perpendicular to B .Now for 

motion perpendicular to B  the force is 

ev B  at right angles to 

v , since the acceleration at right an-

gles to v  is 2 /v  ,where   is radius of 

curvature of the projection of the path 
on to a plane perpendicular to B .it fol-
lows that 
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which is constant. Of corse,(11) is just a 
special case of the non-relativistic form 

of (4), with 2sin , sinpp p v v    . 

The general motion is therefore an 

arbitrary constant velocity along B , su-
perposed on circular motion perpen-

dicular to B  described with constant 
angular velocity  

 
                   /eB m   .                   (12) 
 

It is readily checked that a poitively 
charged particle spirals in the sense of 
a left-handed screw about the magnetic 
field direction, a negatively charged 
particle in a right-handed sense. 

 The expression   and   are com-

monly called the (angular) gyro (or Lar-
mor) frequency and radius. In this non-

relativistic approximation   is inde-
pendent of the energy of the particle; 
for an electron in the earth’s magnetic 
field of, say, B=0.05mT it is about 8.8 

6 110 secrad  .But p  is proportional to 

the square root of the energy; for a 10 
eV electron in a field of B=0.05mT it is 
about 0.21 m. 

If E  and B  are both present, and 
each is constant and uniform, the mo-
tion can be obtained in following way. 

Along B  there is con stant acceleration 

/eE m .Perpendicular to B , the equa-

tion of motion (5) is 
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giving, for motion perpendicular to B , 
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In (13) it is convenient to single out 
the velocity u  explicitly by writing 

 

                    'v u v                   (15) 

 
say. The substitution of (16) into (13) 
then gives 

 

                 ' 'mv ev B                 (16) 

 

and this equation for 'v is precisely 

what would obtain for v in the case 

0E  . 

 

3. Sourses of low frequency 
        magnetic field in medical 
        therapy 

 
Usually the above description of ion’s 

movement is useful in medical therapy 
for visualization and optimization of pa-
rameters of medical apparatus. The low 
frequency magnetic field is provided by 
coils. A girdle coil is applied usually (fig. 
1). 
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Fig. 1 

 
 

 
 

Fig. 2 

 
The human body is in the girdle coil 

during the procedure. The space distri-
bution of the module of magnetic induc-
tion in the coil can be seen on the fig. 2. 

 

Conclusion 
 
The general motion can therefore be 

visualized simply by observing that the 
additional motion arising from the elec-

tric field E  is a constant acceleration 

/eE m
 along B , and a constant veloc-

ity perpendicular to both E  and B , in 
the sense of a right-handle screw from 

E  to B , of magnitude /E B . 
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