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Abstract 
 

In this paper the case is presented in 
which there is no electric field,and in 
wich the magnetic field is constant in 
time and everywhere has the same di-
rection but no necessarily the same 
magnitude. A motion of ions in live tis-
sues is observed.. 

 
1. Introduction 
 

Vector of electric field 0E  ,in rec-
tangular Cartesian coordinates  

 

                 [0,0, ( , )]B B x y                (1) 
 

say, where the requirement div B  en-
sures that B cannot depend on z. 

Unless B  is uniform curl B  does van-
ish and there is a current density asso-
ciated with the field. 

 

2. Motion of ions in  
        uni-dirctional magnetic field 

  
Clearly now both v and zv  and so 

therefore is 

                   2 2

x yv v v    .              (2) 

 

Furthermore, the projection of the 
path of the particle on the x y-plane has 
radius of curvature 

                   ( , )
mv

p x y
eB

 .                (3) 

The curvature of the projected path 
is therefore a constant multiple of the 
magnetic induction. This fact can lead 
to a general appreciation of the nature 
of the path ,and could be used for accu-
rate computation. 

 To investigate the possibility of an 
analytic solution it is noted that the 
equation of motion are 

 

               ,x yv v  y xv v  ,          (4) 

 

where the local giro-frequency 
 
                     /eB m                   (5) 

 
is now a function of x and y ,and only 
motion in the x y-plane need be consid-

ered, with v v  . 

Since equations (6) can be written 
 

                xdv

dy
  ,

ydv

dx
  .       (6) 

 
it is clear that a solution by quadratures 
is possible if   depends on only one of 
x or y. For if it be supposed that B is 
independent of y, say, the second 
equation of (5) gives  

 

                   ,yv x dx                (7) 

 

so that  2 2

x yv v v   is a known func-

tion of x, and t is given in terms of x by 
a further integration. Alternatively, the 
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path can be determined directly from 
the fact that 

 

              

 2 2

y y

x
y

v vdy

dx v v v
 


        (7)  

 
is a known function of x. 

The same results follow readily from 
the Lagrangian formulation. The vector 
potential 

A  = [0,A(x),0] 
 

corresponds to magnetic induction 
 

B = (0,0,
dA

dx
); 

 
and Lagrangian formulation reads 

 

 2 2 21
( ),

2
L m x y z eyA x     

 
the y-coordinate is ignorable and corre-
sponding Lagrange equation has first 
integral 

0,
y

L

v





 

that is 

          ymv eA consyant  ,             (8) 

 
which is the same as (6). 
The example leading to the most el-

ementary analytic details seems to be  
 

               
2

tancons t

x
  .                (9) 

 

For if 0mu const ux const    are 

chosen as the respective constants in 
(8) and (9), then these equations give  

 

              01 / ,yv u x x             (10) 

 
form which (7) can evidently be inte-

grated in terms of elementary functions. 
Without pursuing the details, the topol-
ogy of the path can be ascertained from 

the fact that 2

yv  cannot exceed the con-

stant 2v . Stated algebraically 

 

 2 2 0 0 0
ux ux

v u x x
v u v u

  
     

   
. (11) 

 
Since (9) is symmetric in x, and the 

particle cannot cross the plane x=0, 
there is no loss of generality in confin-
ing attention to positive values of x. let it 

also be assumed that 0ux >0 corre-

sponding to a magnetic field in the posi-

tive z-direction. Then if u v , (11) 

shows that the path goes to infinity and 
that 

                     0 ;
ux

x
v u




                (19) 

 

if also 0u (implayng 0 0x  ) then (19) 

is less than 0x , the value of x for which 

yv  vanishes. If u v ,u must be posi-

tive, and the particle is confined to the 
range 

                0 0 ;
ux ux

x
u v u v

 
 

          (20) 

 

this range contains x= 0x , where yv  van-

ishes. 
Another comparatively simple exam-

ple of some interest is that in which the 
magnetic field varies linearly with x. If, 
say. 

                     
2

0

2 u
x

x
  ,               (21) 

 
Then (6) can be written  
       

                  2

2

0

y

u
v u x

x
  ,             (15) 

 
where u is an arbitrary constant and the 

constant 0x  can be taken as positive. 

The solution of (7) can be expressed in 
terms of elliptic integrals, but again the 
general picture is most easily obtained 



CEMA’07 conference, Sofia 64 

from the fact that 2

yv  cannot exceed 2v . 

For this now reads 
 

 
   

2 2

2 2

2 2

0 0

1 1 0
u x u x

v u
v u x v u x

   
      

       

,(16) 

 
which shows that three cases can be 

distinguished as follows. If u v , then 

 

                  2 2

0

v u
x x

u


                (17) 

 
and the particle is confined between the 

two planes х=   0/v u u x     ; if, also, 

u>0, the range of x includes 0x , the 

values of x for which yv  vanishes. 

Suppose, now, that instead of being 
a function of x only the field is a func-

tion only of  2 2r x y  , that is, there 

is cylindrical symmetry about the z-axis. 
To conclude this sub-section it is noted 
that this is a second case where solu-
tion by quadratures is possible, and a 
specific example is considered. 

In cylindrical polar coordinates r, ,z, 

with 

                0,0,B B r     ,           (22) 

 

the equation of motion in the  -direc-

tion is 

31
( )

d
r r

r dt
   , 

giving 

         
1

( )v r r r dr
r

     .       (23) 

Then 
2 2 2 2

rr v v v    
 

is a known function of r , and t  is given 

in terms of r  by a further integration. Or  
again, the equation of the path is given 
directly by integrating 

             0

2 2

vd
r

dr v v





.            (24) 

For the Lagrangian formulation the 
vector potential in cylindrical polar co-
ordinates can be taken as 

    

                    [0, ( ),0]A A r  ,            (25) 

where  

                  
1

( )
d

B rA
r dr

 .             (26) 

Then 

       2 2 2 21
,

2
L m r r z eA r r      

 
so that   is ignorable and 

 

                    
дL

const
д

 , 

 
which is readily seen to be identical 
with (23). 

An example for which the analytic 
details are elementary is A = constant. 
If the constant is written as 

mu
А const

e
  , then 

                      /u r  ,                (27) 

 
and (23) gives 

               

                    0 01 / ,u r r              (28) 

 

where u  can be taken positive, but 0r  

may be positive or negative. The analy-
sis is evidently virtually the same as 
that in the first example considered in 
this sub-section, which was based on 

equation (10).The requirement that 2v  

cannot exceed the constant 2v  shows 

that there are three types of path. 
 

3. Application of low  
        frequency magnetic field  
        in medicine 

 
The motions of ions under perma-

nent or low frequency magnetic field is 
used often in medicine for treatment of 
knee. (fig. 1). The low frequency mag-
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netic field in this case is provided by 
two inductors. 

 

 
 

Fig. 1 

  

Conclusion 
 

The conclusion exemplifies the main 
results and the fundamental ideas pre-
sented in the paper. It should allow to 
fully recognize the goals of the presen-
tation. In the conclusion, papers con-
cerning educational activities should in-
clude an opening to the education 
community.  
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