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Abstract 
 
Usually in physiotherapy application of magnetic or 

electrical field is the main reason for movement of ions in 
alive tissues. The trajectories of movement of ions depend 
to the space-temporal configuration of electromagnetic 
field. Therefore the first step in the process of investigation 
of movement of ions should be determination of space-
temporal configuration of electromagnetic field. This is one 
complicated mathematical task, but it can be solved more 
easy in the case of uniform electrical and magnetic field. 
This method can be used for mathematical description of 
space-temporal configuration of electromagnetic field for 
one enough small volume as part of alive tissues. 

  
1. MOVEMENTS OF IONS IN UNIFORM  
    MAGNETIC FIELD 

 
          (1) 

 
Because of that, a charged particle has a 

simple cyclotron gyration. The equation of mo-
tion is: 

Bqv
dt
dvm ×=             (2) 

 
Where: 

 is the masse of charged particle; 
  is the velocity charged particle; 
 is the electrical charge of particle; 
 is the magnetic induction in the point were 

is situated the charged particle; 
 
Taking ẑ  to be the direction of B (B=B ẑ ): 
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This describes a simple harmonic oscillator 

at the cyclotron frequency cω . 
Where: 

m
Bq

c ≡ω              (4) 
 
By the convention cω  can be always non-

negative. Then the solution of equations (3) is: 
 

( )yxcyx iti ,, exp δωνν +±= ⊥                   (5) 
 
the ±  denoting the sign of electrical charge 

.The phase δ can be choose, so that: 
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Where: 

⊥ν is a positive constant denoting the speed 
in the plane perpendicular to the vector of mag-
netic induction .  

Then: 
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After integration of equation (6) can be ob-

tained: 
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The radius of rotation of charged particle  
( Larmor radius on fig.1) is:  
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Taking the real part of equation (7) can be 
obtained:  

trxx cL ωsin0 =−   
tryy cL ωcos0 ±=−                            (10) 

 
Fig. 1 

 
 It’s clear that the equation (8) describes a 

circular orbit a guiding center (x0,y0) which is 
fixed (Fig.1).The direction of the gyration is al-
ways such that the magnetic field generated by 
the charged particle is opposite to the externally 
imposed field. The particles in alive tissue, 
therefore, tend to reuse the magnetic field, and 
alive tissues are diamagnetic. In addition to this 
motion, there is an arbitrary velocity vz along the 
direction of the vector of magnetic induction B, 
which is not affected by B. The trajectory of 
charged particle in alive tissue is, in general, a 
helix. 

 
2. MOVEMENTS OF IONS IN UNIFORM  
    MAGNETIC FIELD AND UNIFORM  
    ELECTRICAL FIELD 

 
    (11)  

  
In this case, the motion of charged particle 

will be found to be the sum of two motions: the 
usual circular Larmor gyration plus a drift of the 

guiding center. The vector of intensity of electri-
cal field  can be choose to lie in the x-z plane 
so that Ey=0. As before, the z component of 
velocity is unrelated to the transverse compo-
nents and can be treated separately. The equa-
tion of motion of charged particle is:  
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Whose z component of the velocity is: 
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This is straightforward acceleration along 

magnetic induction . The transverse compo-
nents of equation (12) are: 
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It can be write as: 
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Therefore, that equations (15) is reduced to 

the previous case if replacement of, υy by 
( )BExy /+ν . 

Equations (5) and (6) is therefore replaced 
by: 
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Fig.2. Particle drifts in crossed electric and magnetic fields 
 
The Larmor motion is the same as in the 

case where , but there is superimposed a 
drift gcv of the guiding center in the –y direction 
(for Ex>0), Fig.2  

The equation (12) should be solved for ob-
taining a general formula for the velocity Vgc. 
The equation (12) can be solved in vector form. 
It’s possible to omit the m dv/dt term in equation 
(12), since this term gives only the circular mo-
tion at wc., which we already know about. Then 
equation (12) becomes: 

 
0=×+ BvE          (16) 

 
Taking the cross product with magnetic in-

duction B: 
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The transverse components of this equation 

are. 
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Where: 

Ev  is the electric field drift of the guiding center.  
In magnitude, this drift is: 
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It is important to note that velocity Ev  is in-

dependent of electrical charge q, masse m, and 
velocity ⊥v . The reason is obvious from the 
following physical picture. In the first half cycle of 
the ion’s orbit in Fig. (2), it gains energy from the 
electric field and increases in velocity ⊥v  and 
hence in radius Lr . In the second half-cycle it 
losses energy and decreases in radius Lr . This 
difference in rL on the left and right sides of the 
orbit causes the drift with velocity Ev . A negative 

ion gyrates in the opposite direction but also 
gains energy in the opposite direction. For parti-
cles of the same velocity but different mass, the 
lighter one will have smaller radius Lr  and 
hence drift less per cycle. However, its gyration 
frequency is also larger, and the two effects 
exactly cancel. Two particles of the same mass 
but different energy would have the same cyclo-
tron frequency cω . The slower one will have 
smaller radius Lr  and hence gain less energy 
from E in a half-cycle. However, for less ener-
getic particles, the fractional change of radius Lr  

for a given change in energy is larger, and these 
two effects cancel. 
 
CONCLUSION 
 

1. A mathematical analysis of movement of 
ions in alive tissues under uniform electrical and 
magnetic field is described in the paper. 

2. The trajectories of movement of ions have 
been obtained.  

3. An analysis of connection between pa-
rameters of ion’s trajectories and masse of ions, 
electrical charge of ions, magnetic induction and 
intensity of electrical field have been obtained. 
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