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Abstract 
 
It’s well known that in the case of real application of 

electromagnetic field in physiotherapy, the electromag-
netic field in alive tissues usually is non-uniformed. There-
fore it’s difficult to provide a precise mathematical descrip-
tions, but it’s possible to solve the problem in same cases 
as movement of ions under magnetic field with curved 
lines and invariant value of magnetic induction B (curva-
tive drift) or movement of ions under magnetic field of 
magnetic mirrors. A theoretical investigations on move-
ment of ions in alive tissues in these two cases is de-
scribed in the paper 

 
 

1. INTRODUCTION 
 
Now the concept of a guiding center drift is 

firmly established. It’s possible to discuss the 
motion of particles in inhomogeneous field – E 
and B fields, which vary in space or time. For 
uniform fields can be obtained exact expres-
sions for the guiding center drifts. In the case of 
inhomogeneity, the problem becomes too com-
plicated to solve exactly.  

 

 
 

Fig. 1 
 
To get an approximate answer, it is custom-

ary to expand in the small ratio /LrL , where L is 
the scale length of the inhomogeneity. This type 
of theory, called orbit theory, can become ex-
tremely involved. It would be possible to exam-
ine only the simplest cases, where only one 
inhomogeneity occurs at a time BB ⊥∇ . 

 

Here the lines of force are straight, but their 
density increases, say in the y direction (Fig. 1). 
It would be possible to anticipate the result by 
using our simple physical picture. The gradient 
in |B| causes the Larmor radius to be larger at 
the bottom of the orbit than at the top, and this 
should lead a drift , in opposite directions for 
ions and electrons, perpendicular to both B and 

B∇ . The drift velocity should obviously be pro-
portional to LrL /  and to ⊥v . Consider of the 
Lorenz force  B qvF ×= averaged over a gyra-
tion. Clearly, 0=xF , since the particle spends 
as much time moving up as down. It’s possible 
to calculate yF , in an approximate fashion, by 
using the undisturbed orbit of the particle to find 
the average. IIn this case: 
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It possible to made a Taylor expansion of B 

field about the point 00 =x , 00 =y : 
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The magnetic field lines are often called 

“lines of force“. They are not lines force. The 
misnomer is perpetuated here to prepare the 
student for the treacheries of his profession.This 
expansion of course requires rL/L<<1, where L is 
the scale length of yBz ∂∂ /  The first term of 
equation (1) averages to zero in a gyration, and 
the average of tcω2cos is 1/2 so that. 
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The guiding center drift velocity is then:  
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Since the choice of the y axis was arbitrary, 

this can be generalized to:  
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This has all the dependences, which can be 

expected from the physical picture; only the 
factor ½ (arising from the averaging) was not 
predicted. Note that the ±  stands for the sign of 
the charge, and the lightface B stands for |B|. 
the quantity is called the grad-B drift; it is in op-
posite directions for ions and electrons and 
causes a current transverse to B. An exact cal-
culation of Bv∇  would require using the exact 
orbit, including the drift, in the averaging process. 

 
2. MOVEMENT OF IONS UNDER MAGNETIC  
    FIELD WITH CURVED LINES AND INVARI-  
    ANT VALUE OF MAGNETIC INDUCTION B  
    (CURVATIVE DRIFT)  

 
In this case the lines of force to be curved 

with a constant radius of curvature Rc and  
|B| =const (Fig. 2). Such a field does not 

obey Maxwell’s equations in a vacuum, so in 
practicle the grad- B drift will always be added to 
the effect derived here. A guiding center drifts 
aries from the centrifugal force felt by the parti-
cles as they move along the field lines in their 
thermal motion. If 2

||v  denotes the average squ-
are of the component of random velocity along 
B, the average centrifugal force is : 
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This gives rise to a drift : 
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Fig. 2. A curved magnetic field 

 
The drift Rv is called the curvature drift. 
It’s necessary to complete the grad-B drift 

which accompanies this when the decrease of 
|B| with radius is taken into account. In a vac-
uum 0=×∇ B .In the cylindrical coordninates 
of Fig. 2 has only a z component, since B only a 
θ  component and B∇  only an r component. 
Therefore: 
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Using equation (5): 
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Adding this to rv , it’s possible to obtain the 

total drift in a curved vacuum field: 
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It is unfortunate that these drifts add. For a 

Maxwellian distributional, indicate that 2
||v  and 

2

2
1

⊥v  are each equal to KT/m since v involves 

two degrees of freedom. Therefore:  
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Where: ŷ here is the direction BRc × .  

This shows that BvR ∇+  depends on the 
charge of the species but not on its mass. 

 
3. MOVEMENT OF IONS UNDER MAGNETIC  
    FIELD B||B: MAGNETIC MIRRORS 
 

 
 
Fig. 3. Drift of a particle in a magnetic mirror field 

 
This is a magnetic field which is pointed pri-

marily in the z direction and whose magnitude 
varies in the z direction. Let the field be axisym-
metric, with 0=θB and 0/ =∂∂ θ . Since the 
lines of force converge and diverge, there is 
necessarily a component Br (Fig. 3). We wish to 
show that this gives rise to a force, which can 
trap a particle in a magnetic field. It’s possible to 
obtain Br from 0. =∇ B : 
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If zzB ∂∂ /  is given at r=0 and does not vary 

much with r, it’s possible to have approximately 
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The various of |B| with r causes a grad- B 

drift of guiding centers about the axis of symme-

try, but there is no radial grad-B drift, because 
0/ =∂∂ θB . The components of the Lorenz 

force are: 
 

( )
( )
( )rrz

rzzr

zzr

BvBvqF
BvBvqF

BvBvqF

θθ

θ

θθ

−=
+−=

−=
        (15) 

 
Two terms vanish if 0=θB and terms 1 and 

2 give rise to the usual Larmor gyration. Term 3 
vanishes on the axis; when it does not vanish, 
the azimuthal force causes a drift in the radial 
direction. This drift merely makes the guiding 
centers follow the lines of force. Term 4 is the 
one we are interested in. Using equation (14), 
it’s possible to obtain: 
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It’s necessary to average over one gyration. 

For simplicity, consider a particle whose guiding 
center lies on the axis. Then θv  is a constant 
during a gyration; depending on the sign of q, θv  
is ⊥vm  

Since Lrr =  the average force is  
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 The magnetic moment of the gyrating parti-

cle to be: 
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CONCLUSION 
 

1. A mathematical analysis of movement of 
ions in alive tissues under non uniform magnetic 
field created by apparatus for magnetotherapy is 
described in the paper. 

2. The trajectories of movement of ions have 
been obtained.  
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3. An analysis of connection between pa-

rameters of ion’s trajectories and masse of ions, 
electrical charge of ions, magnetic induction 
have been obtained. 
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