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Abstract 

 
The problem of radiation of arbitrarily distributed currents in boundless uniaxial magnetic crystal media is considered through the 

method of generalized solutions of the system of Maxwell’s equations in an exact form. The solution resolves into two independent 
solutions. The first corresponds to the isotropic solution for currents directed along the crystal axis, while the second corresponds to 
the anisotropic solution when the currents are perpendicular to the axis. Through the use of the expressions for current density of the 
point magnetic and electric dipoles using delta-function representations, the formulae for the radiated electromagnetic waves, as well 
as the corresponding radiation patterns, are derived. The obtained solution in the anisotropic case yields the well – known solutions 
for the isotropic case as a limiting case. Furthermore, the numerical calculation of the solution of Maxwell’s equations shows that it 
satisfies the energy conservation law, i.e. the time average value of energy flux through the surface of a sphere with a point dipole 
placed at its center remains independent of the radius of the sphere. The obtained generalized solutions of the Maxwell’s equations 
are valid for any values of the elements of the permeability tensor, as well as for sources of the electromagnetic waves described by 
discontinuous and singular functions. 

 
 
1. INTRODUCTION 

 
Anisotropic materials have found wide applica-

tion in the microcircuits working on ultrahigh fre-
quencies. Thin films from monocrystals are effec-
tively used as waveguide’s systems.  

The problem of radiation of an elementary elec-
tric dipole in uniaxial infinite crystal was considered 
in Ref. [1] with the help of the theory of the general-
ised functions. The present work is continuation for 
a case of a magnetic dipole. There are the electro-
magnetic field and the directivity diagrams of the 
point magnetic dipole is considered. 

 
2. SOLUTION OF MAXWELL'S EQUATIONS FOR  
    UNIAXIAL ANISOTROPIC MEDIUM 

 
Maxwell's equations for uniaxial anisotropic elec-

tromagnetic media of stationary processes are: 
 

 




=⋅ω+
=⋅ω

,jDiH rot

 ,BiΕ rot 0-
   (1) 

 

which is possible to be presented in matrix form: 
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where ω  is the constant frequency of electromag-
netic field, M  is Maxwell's operator, I  is a identity 
matrix 3х3, E , H  are the intensity of electric and 
magnetic fields, J  is vector of current density. 

In magnetically anisotropic media the relation 
between induction and intensity of the magnetic 
field is: 

HµB ˆ0µ=  
 

and vector of electric induction: 
 

ED 0εε= . 
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3. SOLUTION OF THE PROBLEM 
 
A method based on the theory of the general-

ized function of the Fourier transformation is used 
for solving the matrix equation (2) [1]:  
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where 

zyx dkdkdkkd =3 . 

 
By means of direct Fourier transformation we 

write down the system of equations (1) or (2) in 
matrix form: 

JUM
~~~ = .                        (3) 

 
The solution of this problem is reduced to the 

solution of the system of the linear algebraic equa-

tions (4), where U
~

 is defined by means of inverse 

matrix 1~ −M : 

 JMU
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By introducing new functions according to 
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the components of the electromagnetic field after 
transformations in image space can be written as 
follows: 
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After the inverse Fourier transformations from 
(6) and (7) we obtain: 
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This solution can be written in the form of the 

sum of two solutions: 
 

 21 EEE += , 21 HHH += .  
 
It should be noted that the first of them is the 

‘isotropic’ solution. It is defined by Green’s function 

0Ψ  and the density of the current 0j  directed 

endwise the axis z (of the anisotropy): 
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where the Green’s function 0Ψ  can be defined 

from (5) by inverse Fourier transformation [1] 
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The second solution can be written by using the 

component of the density of the current ⊥j  per-

pendicular to axis z and the Green’s functions 0Ψ  

and m
2Ψ :  
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where integral cosine and sine are defined by for-
mulae’s: 
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and Euler’s constant 5772,0=γ . 

 
4. RADIATION PATTERNS OF HERTZIAN  
    RADIATOR  

 
The moment of point electric dipole is given by  

 tipe ω−= np  ( ⊥+= ppp 0 ), (15) 
 

where p is a constant. It corresponds to the current 
density defined by means of the Dirac delta-
function:  

 )(rpj δω ⋅−= i . (16) 
 

The expression of the electromagnetic field for 
electric radiator will take the following form as for 
isotropic medium, when the direction of the dipole 

moment is parallel to the axis z ( 0pp = ) (Fig.1): 
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Also when the direction of the dipole moment is 

perpendicular to the axis z, we obtain ( ⊥= pp ) 

(Fig. 2): 














Ψ

−Ψ
∂
∂+=

Ψ+

−Ψ=

⊥

⊥

⊥

⊥

).rot(

)(rotgrad)(

),graddiv)((

)rotrot(

0

2zz
2
02

0
2
0

2z
2
020

p

pH

p

pE

m

m
z

z
k

k

k

e

eεε

 

  

 
Fig. 1. Directional diagrams (DD). The dipole moment is paral-

lel to the axis z ( 0pp = ). 

 

  

 

Fig. 2. DD. The axis of electric dipole is perpendicular to axis z 

( ⊥= pp ), 9/1 =µµ . 

 
 

5. RADIATION PATTERN OF POINT MAGNETIC  
    DIPOLE MOMENT  

 
On the basis of the obtained results, we consid-

er now radiation of point magnetic dipole moment. 
For a point radiator with the oscillating magnetic 
dipole moment, similarly to the electric dipole case, 
we have: 

 
 )ехр( tim ⋅−= ωnm   

( ⊥+= mmm  0 , const=m ) 
 
the electric current density is defined by using Di-
rac’s delta-function: 
 

 )(][ rmj δ⋅∇−= , . (17) 

 
(i) Case m = m0: 
Relation between density of the electric current 

⊥j  and the magnetic dipole moment is defined as 

following, in the case that the magnetic dipole mo-
ment m is directed lengthwise z-axis:  
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It should be noted that the following useful for-

mulae hold: 
  

 0div =⊥j , 00 =j . (19) 
 
Taking into account Eq. (19), intensities of the 

electromagnetic field by the magnetic dipole mo-
ment are defined from the solutions (12) in this 
case, as following: 
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(ii) Case m = m⊥: 

For the point magnetic dipole moment m⊥ which 
is perpendicular to axis z we define intensities of 
electromagnetic field as following (Fig. 4):  
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Directional diagrams are represented in Figs. 3, 

below : 
 

 

 
 

Fig. 3. DD. The axis of magnetic dipole is parallel to axis z 
(m = m0). 

 

 
 

Fig. 4. DD. The axis of magnetic dipole is perpendicular to 

axis z , .7/1 =µµ  

 
6. CONCLUSION 

 
The numerical calculation of the solution of 

Maxwell’s equations satisfies the energy conserva-
tion law. Numerical computation shows that time 
average value energy flux on a surface of sphere 
from a point dipole remains independent from its 
radius. 

As shown in the electric dipole directional dia-
grams, medium becomes isotropic for such radiator 
if its moment is directed along anisotropy axis. The 
dipole pattern in isotropic media is shown in Fig. 1 
and directional diagram itself possesses the rotation 
symmetry. However, the point magnetic moment 
does not possess such property. 
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