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Abstract 

 
Complex impedance measurement methods are widely described, but the information on what the uncertainty of the measure-

ment in case of complex result is scarce. 
In this article we will investigate two techniques of I-V method: the I-V differential and I-V single ended. Both of them are based 

on “voltage divider”. Complex value measurement uncertainty analysis is presented based on theoretical measurement setup analy-
sis and complex sensitivity functions. Real and imaginary uncertainty components are presented in complex impedance plane.  

 

 

1. INTRODUCTION 

 
The complex circuit impedance is widely used in 

electromagnetic and ultrasound applications. Im-
pedance variation over frequency range is receiving 
greater attention nowadays. Because of wideband 
nature of measurements, impedance is varying in 
wide range. In addition, impedance variance is in 
complex plane. Usually it is undesirable to have 
jumps in impedance measurements (in case of 
hysteretic analysis or nonlinear circuits). Therefore 
it is important to have a technique, capable to ob-
tain the impedance without changing the reference 
impedance (reference impedance switching will 
cause current and voltage variation in investigated 
circuit). When complex values are measured, the 
uncertainty estimation becomes complex too. 

Here we aim to analyze the measurement un-
certainties of I-V method when it is used for com-
plex impedance measurements. 

 
2. I-V IMPEDANCE MEASUREMENT  

 
The unknown impedance Zx can be obtained 

from the measured values of voltage and current. 
When voltage and current are obtained directly then 
technique is named I-V [1]. The measurement can 
be arranged using two techniques: the I-V differen-
tial and I-V single ended. The simplified connection 
diagram of the I-V differential technique is present-
ed in Figure 1.  

Current is calculated using the voltage meas-
urement across an accurately known resistor, Rref. 
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Fig. 1. Differential I-V technique 

 
The single-ended technique is using only single-

ended measurement channels. The implementation 
diagram for single-ended technique is presented in 
Figure 2.  
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Fig. 2. Single ended I-V technique 

 
The Rref voltage dropout is obtained by voltages 

UZx and Uin subtraction: 
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The analysis below is based on circuits presented. 
 
3. THE SENSITIVITY COEFFICIENTS  

 
Uncertainty analysis was done to estimate the 

presented techniques’ performance. Assuming that 
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impedance is measured using indirect method, for 
uncorrelated input quantities the combined standard 
uncertainty uc(Zx) is a squares sum of correspond-
ing uncertainties ui(Zx) [2] : 
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The quantity ui(Zx) is the contribution to the 

standard uncertainty associated with the output 
estimate Zx associated with i-th the input estimate 
xi. Then the i-th sensitivity coefficient ci of the corre-
sponding input estimate xi is the partial derivative of 
the measurement function f with respect to xi 
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So, a single-ended I-V technique Zx according to 

equation (2) is a function of UZx, Uin and Rref accord-
ingly. The sensitivity coefficients for those variables 
can be obtained as [3]: 
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And the absolute combined standard uncertainty 

of Zx [4]: 
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where u(UZx), u(Uin) and u(Rref) are corresponding 
components’ absolute uncertainties. 

4. UNCERTAINTY ANALYSIS 

For performance evaluation the relative uncer-
tainty of impedance Zx was used: 
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Equation (8), together with voltage measure-
ment standard uncertainty and resistor accuracy 
have been used. Applying equation (8) for equation 
(9) gives the percentage relative uncertainty for 
impedance measurement when I-V impedance 
measurement using single-ended implementation is 
used  
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Voltage measurement uncertainty required for 

equation (8) and (10) was obtained from experi-
mental results presented in [4], since similar system 
is planned for the measurements. The input voltage 
Uin has been assumed of 1 V value, reference resis-

tor Rref was assigned 10Ω value. The variation for 
unknown impedance was given the variance range 
as the fraction of reference resistor Rref. The result-
ing voltages and currents were use to obtain final 
value of measurement uncertainty. Real and imagi-
nary parts (Figure 3) were treated separately, giving 
the variance in corresponding range. 
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Fig. 3. Zx complex measurement using single-ended  

implementation 

 
If variables in equation (10) are complex, the re-

sulting uncertainty will be complex too. In order to 
analyse the uncertainties, tree ways were chosen: 
absolute value: 
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and real and imaginary parts: 
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The uncertainty absolute value is presented in 

Figure 4.  
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Fig. 4. Relative standard uncertainty of Zx complex  

measurement influence of u%(Rref) 

 
 

Wide range (x1000 times above and below the Rref) 
for variance was given. Real and imaginary parts 
and uncertainty value itself produce the 3-
dimensional space. Contour plot might be more 
convenient (Figure 5).  
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Fig. 5. Contour plot of absolute value of relative standard 

uncertainty  

 
It can be seen that there is significant area of flat 
plateau in measurement uncertainties, and only 
when approaching ratios of 1000 times random 
errors become significant. 

When analyzing in details (Figure 6, x10 times) it 
can be noted that there is a insignificant local mini-
ma, located at 1.6xRref. It depends on reference 
resistor accuracy. 
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Fig. 6. 3D plot and contour plot of absolute value of relative 

standard uncertainty for smaller range  

 
 
Theoretically uncertainty of 0,2% can be rea-

ched, if 0.1% uncertainty reference resistor is used. 
Real (Figure 7) and imaginary (Figure 8) parts 

for the same analysis are presented.  
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Fig. 7. Contour plot of real value of relative standard  

uncertainty for smaller range  
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Fig. 8. Contour plot of imaginary value of relative standard 

uncertainty for smaller range  

 
It can be seen that real part of uncertainty varies 
along real impedance axis and imaginary part var-
ies along imaginary axis correspondingly. 
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6. CONCLUSIONS 

 
The analysis uncertainties of complex imped-

ance measurement estimation were presented.  
It has been shown that both real and imaginary 

parts of uncertainty exist which define the optimal 
range for the technique application. 
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