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Abstract 
 
Application of the real time digital filters in ultrasonic data acquisition system has been investigated. The work compares the digi-

tal filters (both programmable logic (CPLD/FPGA) both real time processing carried in PC) effectiveness when applied on ultrasonic 
signals. The investigation is cover filter, rounding noise and amplitude estimation performance. The acquisition system has been 
developed, including Xilinx Spartan 3E FPGA, high speed 10bit ADC and USB2 high speed interface. FIR filters have been devel-
oped and investigated experimentally. 

Experimental results are documented and presented in tables and figures. Description and grounding of experimental techniques 
are presented. 

 
 

1. INTRODUCTION 
 

Development of ultrasonic inspection is raising 
demands for signal filtering since fields of applica-
tion require higher dynamic range of the reception 
channel. Along with conventional, analog filter cir-
cuits, digital filtering is being extensively used. High 
gain values used, use of switched mode power 
supplies gives rise for electromagnetic interference 
(EMI). Ultrasound equipment should contain filters 
for EMI reduction [1].  

Application of real time digital and/or analog fil-
ters in ultrasonic data acquisition system allows to 
have required processing immediately, during data 
acquisition process. The work will compare the 
digital (both programmable logic (CPLD/FPGA) 
both real time processing carried in PC) [2]. The 
investigation will cover filter rounding noise and AC 
response performance.  

 
 
2. EXPERIMENTAL SYSTEM 
 

The acquisition system has been developed for 
experimental purposes, including Xilinx Spartan 3E 
FPGA, high speed 10bit analog-to-digit converter 
(ADC) and USB2 high speed interface (Figure 1).  

The core of the system is Spartan 3E Starter 
Board [3], obtained from Digilent, Inc. The Board is 
a self-contained development platform for designs 
targeting the Spartan 3E FPGA from Xilinx. It fea-
tures a 500K gate Spartan 3E XC3S500E FPGA 
with a 32 bit RISC processor and DDR interfaces. A 
Xilinx Platform Flash for storing FPGA configura-
tions, JTAG interface, 32MB Micron DDR SDRAM, 

16MB Numonyx StrataFlash, 2MB ST Microelec-
tronics Serial Flash, necessary Power Supplies 
regulators. For FPGA development in VHDL [4], 
Xilinx ISE web pack was used. Simulation was run 
on Aldec software Active HDL. Filter design and 
some simulations were run on MATLAB. 

 
 

 
 

Fig. 1. Simplified system structure 
 
The 100-pin Hirose FX2 connector is used for 

daughter board connection (Figure 2). 
Daughter board contains coaxial connectors for 

analog signals supply, asymmetric to differential 
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converter and differential amplifier, anti-aliasing 
filter, high speed 10 bit ADC and USB2 high speed 
interface. Refer Figure 3 for daughter board circuit 
diagram. 

 

  
 

Fig. 2. FPGA board with daughter board attached 
 

 
3. DIGITAL NOISE INVESTIGATION 
 

Sampled continuous wave (CW) amplitude ex-
traction error standard deviation was used as noise 
evaluation. Sine wave correlation (SWC) [5] tech-
nique was used to extract the signal amplitude from 
acquired data set.  

It was suggested to use common reference fre-
quency source for excitation generator and sam-
pling. Then frequency instability errors can be dis-

regarded. In such case non-iterative fitting is used 
[5]: 
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Then the magnitude and phase: 
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Fig. 3. Daughter board circuit diagramm 
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The SWC technique has been implemented for 
measured signal amplitude and phase estimation in 
data acquisition module. Experiments were repeat-
ed 1000 times and amplitude obtained in every 
cycle was accumulated and then standard deviation 
calculated. 

Following system operation modes wre investi-
gated: 

1. 1 MHz CW signal acquired using 100 MHz 
sampling frequency and 10 bit ADC. Analog signal 
was passed through anti-aliasing filter. Signal 
stored in 8k memory. 

2. Same 1 MHz CW signal acquired using at 
100 Ms/s sampling frequency and 10 bit ADC with 
preceding anti-aliasing filter. But then was decimat-
ed to 10 Ms/s and stored in 8k memory. Anti-
aliasing filter is used during decimation and stored 
as 10 bit. 

3. Same 1 MHz CW signal acquired using at 
10 Ms/s sampling frequency, 10 bit ADC with pre-
ceding anti-aliasing filter and stored in 8k. 

Experiments were carried out in MATLAB. Sys-
tem input noise density was varied. Results where 
quantisation err was not taken into account are 
presented in Figure 4.  
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Fig. 4. Measured voltage standard deviation vs. electronics 
noise spectral density 

 
It can be concluded that only filter bandwidth is 

influencing errors obtained. Therefore, keeping 
record length 8k gives same filter bandwidth for 
10 Ms/s case and wider bandwidth for 100 Ms/s 
case.  

Then quantisation was applied to evaluate the 
quantisation noise influence. In order to keep the 
quantisation noise as much random, carrier fre-
quency was varied and kept as a fractional number 
of sampling frequency. Also, small amount 
(10 nV/sqrt(Hz)) of electronics noise was injected to 
simulate the real case. Results are presented in 
Figure 5. 

 
 

Fig. 5. Measured voltage standard deviation vs. quantisation 
noise standard deviation 

 
ADc resolution was varied from 4 to 16bits and 
resulting quantisation noise standard deviation 
evaluated as: 
 

                
122K

FS
ADCnRMS

UU  , (5) 

 
where K is ADC bits number, UFS is the ADC full-
scale range.  

It can be concluded that ADC quantisation noise 
should match the electronics noise: otherwise noise 
statistics is distorted (see the upper part of the 
curve on Figure 5); also, there no need for further 
increase of ADC resolution since electronic noise 
starts to dominate (see the lower part of the curve 
on Figure 5 – there is no improvement in noise 
performance). 

 
 

4. DIGITAL FILTERS INVESTIGATION 
 

Digital filters were implemented in FPGA and 
testing signals acquired using acquisition system 
developed. Filter AC response was measured pass-
ing chirp signal through the filter. Using the spectra 
of signal supplied to filter and at the filter output 
filter AC response was obtained: 
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Refer Figure 6 for signal magnitude spectrum 

used for testing. 
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Fig. 6. Test signal spectrum 
 
AC response for 39 taps FIR equiripple filter is in 

Figure 7. 
 

100k 1M 10M
0

1M

2M

fil
te

r g
ai

n 
[a

.u
.]

frequency [Hz]

 Least Squares
 Equiripple

 
 

Fig. 7. FIR filters AC response 
 
Filter cutoff frequency was 4.4MHz and stop-

band frequency was 9MHz with stopband attenua-

tion 64dB (demanded by 10bit decimation from 
100Ms/s to 10Ms/s) and it had 42 taps. 

Another filter (Figure 7) had same cut-off fre-
quency and stopband frequencies and attenuation 
but it was designed as least squares filter. 

 
 

5. CONCLUSIONS 
 
Application of digital filters in real time non-

destructive testing ultrasonic systems is favoured 
nowadays. But possible artefacts are the penalty for 
digital processing advantages. Design of the filters 
require both high designer qualification both efforts 
in fighting such issues as saturation, abrupt degra-
dation of the signal. 
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