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Abstract 
 

This paper develops filter derivation for volumetric image processing both for the cases of separable and non-separable three-
dimensional filters. Such filters find major applications in the fields of computed tomography and magnetic resonance imaging sys-
tems, as well as in other subsurface sensing techniques. 

 
 

1. INTRODUCTION 
 
Volumetric images arise in many applications 

such as computer tomography imaging and subsur-
face sensing of various hidden spaces. Volumetric 
images are represented as three-dimensional (3-D) 
arrays of voxel values. They provide realistic repre-
sentations of real world solids as true 3-D images, 
not just 2-D projections onto a planar display. Being 
3-D signals, volumetric images are subject to 3-D 
signal processing. The various filtering techniques 
from 2-D signal processing may be extended to 
three dimensions. 

Basic to the filter characterization methodology 
is the derivation of the impulse response of an ideal 
lowpass 3-D filter. Based on that response, various 
highpass, bandpass and bandstop filters can be 
developed. 

The paper is organized as follows. Section 2 
gives the impulse responses of a separable filter 
with an ideal rectangular passband and of a non-
separable filter with an ideal spherical passband. 
Section 3 summarizes the results and a separate 
Appendix section outlines the derivation of the re-
sults in Section 2. 

 
 

2. IDEAL LOWPASS FILTER 
 
The starting point for designing a filter is the ide-

al lowpass filter spectral characteristic from which 
different highpass, bandpass and bandstop filter 
configurations can be derived. Similarly to the digi-
tal filters in 2-D signal and image processing [1, 2], 
the 3-D image filters can also be separable with 
rectangular support and non-separable. The non-
separable 3-D filter considered in this paper has a 
circular support. 

The performance difference between a separa-
ble and a non-separable filter lies in the spectral 
characteristics along different directions in 3-D 
space. On the one hand, the separable filter is 
simply designed; its impulse response is equal to 
the product of the marginal impulse responses 
along the three spatial axes which determines inde-
pendent spectral characteristics along the three 
axes. Its passband is rectangular which means that 
this kind of filter would pass higher frequencies 
along the diagonal directions of the rectangle, com-
pared to the frequencies along each frequency axis. 

On the other hand, the non-separable filter of-
fers spectral characteristics along the different di-
rections which are no longer independent. In partic-
ular, the non-separable filter with spherical pass-
band offers equal spectral characteristics along any 
direction in 3-D space. This may be very important 
especially in computed tomography and magnetic 
resonance imaging where the data details are 
equally important in all directions. 

Those observations give grounds to develop fil-
ter characterizations for both separable and non-
separable 3-D filters. The particular use of one of 
them is determined by such factors as complexity, 
speed, reliability in all directions and, of course, the 
particular intended application.   

 
2.1. Rectangular passband 

 
The rectangular passband defines a separable 

3-D filter. The impulse response of such a filter is 
given by (details in Appendix A) 

 

 
3

3

2

2

1

1
321

321
sinsinsin

,,
n

n
n

n
n

n
nnnh ccc

r 








   (1) 



CEMA’10 conference, Athens 63 

for – < n1, n2, n3 < , where 
1c

 ,
2c  and 

3c
  

are the cut-off spatial frequencies along the corre-
sponding three frequency axes.  

For cccc  
321

, the filter’s passband 

becomes cubic. 
Fig. 1 shows pseudocolor slice plots of the im-

pulse response of the separable 3-D filter in (1). 
Fig. 1a shows the rectangular passband 3-D filter 
with 

1c
 =/2, 

2c =/4 and 
3c

 =/8. Fig. 1b 

shows the cubic passband 3-D filter with the cut-off 
spatial frequency c =/4. 

 

 
a) Rectangular passband with 

1c
 =/2, 

2c =/4 and 

3c
 =/8 

 

 
b) Cubic passband with c =/4 

Fig. 1. Impulse response of a separable 3-D filter with a  
rectangular passband 

 
2.2. Spherical passband 

 
The spherical passband defines a non-separab-

le 3-D filter. The impulse response of such a filter is 
given by (details in Appendix B) 
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with j1() being the first-order spherical Bessel func-
tion of the first kind and c being the cut-off spatial 
frequency. 

Fig. 2 shows s pseudocolor slice plot of the im-
pulse response of the non-separable 3-D filter with 
spherical passband in (2) with cut-off spatial fre-
quency c =/4. 

 
Fig. 2. Impulse response of a non-separable 3-D filter  

with a spherical passband 
 
 

3. CONCLUSION 
 
This paper develops derivation of the impulse 

responses for a separable and a non-separable 3-D 
filters. The separable filter naturally has a rectangu-
lar passband while the non-separable filter consid-
ered here is with spherical passband. Such filters 
are applicable in 3-D and 4-D computed tomogra-
phy imaging, as well as in various volumetric sub-
surface sensing and imaging applications. Further 
work will report various performance measures of 
those filters applied to different real-world captured 
data sets.  

 
 

4. APPENDIX 
 

A. Ideal lowpass filter with a rectangular  
passband 

 
The frequency response of such a filter is given 

by 
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in the frequency cube  3,   , where the indica-
tor function 
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I is defined as 
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for I = 1, 2, 3, and with 
ic

  being the filter’s cut-off 

frequency with  
ic . The ideal impulse re-

sponse of the filter is derived by taking the inverse 
3-D Fourier transform of this separable function in 
the frequency domain: 
 

 
  

 










 
 3213

3322111
2
1 dddeh nnnj

r  

=   













 

 11
11

12
1 deI nj

c
 

  



 








 

 22
22

22
1 deI nj

c
 

  



 








 

 33
33

32
1 deI nj

c
 

           
3

3

2

2

1

1 321
sinsinsin

n
n

n
n

n
n ccc










 ,       (5) 

 
for – < n1, n2, n3 < . 
 

B. Ideal lowpass filter with a spherical passband 
 

The frequency response of such a filter is given 
by 
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in the frequency cube  3,   . The ideal im-
pulse response of the filter is derived by taking the 
inverse 3-D Fourier transform of this function in the 
frequency domain: 
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where j0() and j1() are the zero-order and the first-
order spherical Bessel functions of the first kind [3]. 

In order to carry out the integration, the following 
substitutions have been made. First, polar coordi-
nates in frequency are used for 1 = usincos
2 = usinsinand3 = ucosThen, polar coor-
dinates in space are used for n1 = rsincos
n2 = rsinsinandn3 = rcos 
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