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Abstract 

 
In this paper an analysis is presented concerning the asymptotic state of the one-dimensional self-organizing map (SOM) with 

finite grid in the case of Rayleigh point distribution input. The main goal is to find the diversion of the neurons’ location after a certain 
number of epochs. The SOM distortion measure is analyzed with its value found approximately using Taylor series. The stationary 
values of the statistical expectations covered by the neurons are found solving a set of non-linear equations. Also the objective function 
of the SOM is found along with its gradient and using gradient-descent approach the minimum of the distortion measure is calculated. 
Based on the values obtained useful tips for proper initialization of the SOM in this case are given. The results are considered useful 
enough in wide variety of practical cases in telemedicine, image processing, optical communications and other areas. 

 
 

1. INTRODUCTION 
 
It is well known fact that the area allocated for 

storing the most important feature set inside a self-
organizing map (SOM) is proportional to the fre-
quency of occurrence of that very same feature in 
the observations [1].  

So far an investigation of the point density for 
the linear map is led in the presence of a very large 
number of codebook vectors over a finite area for 
linear, linear-quadratic and quadratic distributions 
[2], [3]. It is revealed that the asymptotic point 
density is proportional to the probability of a certain 
feature vector occurring raised to some exponent 
depending on the number of neighbors including 
the winning neuron and some scalar factor. Similar 
research on the change of this power is done in [4] 
when the neighbor function is Gaussian kernel and 
its normalized second moment is independent 
variable. The resulting range for the power value in 
this case is from 1/3 to 2/3. Similar results are 
presented in [5]. 

Some more recent researches concern the 
asymptotic state of the SOM at normal [6] and 
distorted normal distributions when the input passes 
at first through non-linear channel [7] where the 
power value range is found to be wider. 

Here the influence of the Rayleigh point density 
of the input over the asymptotic state of a finite one-
dimensional SOM is investigated with its distortion 
measure. In part 2 theoretical analysis is presented 
and in part 3 some experimental results are given. 
In part 4 a conclusion is made. 

2. SOM ANALYSIS WITH RAYLEIGH POINT  
    DENSITY INPUT 

 
Let one-dimensional feature space of x is consi-

dered. The number of points must be large enough 
(e.g. by criteria given in [1]) and they must be 
stochastic variables so their probability density p(x) 
could be defined. The codebook vectors mi usually 
form regular optimal configuration and thus can not 
be stochastic. Their number is typically low in any 
cluster as well. 

 
2.1. Asymptotic State of the One-Dimensional  
       Finite-Grid SOM 

 
Let suppose mi and mi+1 are two neighboring 

points. A way of defining the point density is as 
(mi+1 – mi)-1 but it does not cover the samples 
around the boundaries of the clusters for which this 
density does not have meaning. So a better way of 
defining it is as the inverse of the width of the 
Voronoi set [(mi+1 – mi)/2]-1. The input consists of 
samples  ,...2,1,0 ,)( =ℜ∈ ttx while the codebook 
is .,...,1 ,...,2,1,0 ,)( kittmi ==ℜ∈ .The one-di-
mensional SOM algorithm with at least one neigh-
bor at each side is given by [1]: 
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where Nc is the neighbor set around node c and ε(l) 
is the learning-rate factor. The Voronoi set Vi 
around mi is defined as: 
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In this case Ui is the set of such x(t) which 

provoke changes in mi(t) during one learning step. 
Following (1) and (2) we get to the well known 
stationary equilibrium for mi coinciding for the 
general case [1]: 

 i },|{ ∀∈= ii UxxEm . (3) 
 
In other words every mi becomes centroid of the 

probability mass for each Ui and then for 2 < i < (k-
1) the limits for Ui are: 
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For i =1 and i = 2, Ai = 0, and for i = k – 1 and i = 

k,   Bi = 1.  
The case investigated here concerns input data 

with the following distribution: 
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As (5) is too complex to be used in finding the 

centroids of the probability masses, Taylor series 
are used instead: 
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We find the absolute difference between the 

third and second order approximations: 
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Since: 
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then p(0) = 0, p’(0) = 1/σ2, p’’(0) = 0, p’’’(0) = -3/σ4, 
and Δp32(x) = -x3/2σ4. 

Now for 5 typical cases of σ the error Δp32 is 
found and the results are presented in Fig. 1. It is 
visible that only for σ = 0.5 the error between the 
second and third approximation exceeds 
considerably 1 by module and this in such a wide 
range for x from 0 to 10. So it is reasonable to use 
approximation for the original distribution of second 
order that is p(x) ≈ x/σ2. 

 

 
Fig. 1. The absolute error between approximations  

of second and third order 
 

The stationary values of the mi are defined by: 
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But they could be expressed in even simpler 

way - it consists of defining the point density qi 
around mi as the inverse of the length of the Vo-
ronoi set – qi = [(mi+1 – mi-1)/2]-1. As a result of that 
qi can be expressed in the form const.[p(mi)]α. Then 
passing from mi to mj it is true: 
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For improved accuracy more values of the mi 

are needed as we shall see in the next section. 
 

2.2. Finding the One-Dimensional SOM  
       Distortion Measure with Finite Grids 

 
The objective function of the SOM is given by 

[1]: 
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where Vi is the Voronoi set around mi and hij is de-
fined as: 
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and i and j run over all the values defining hij. 

Then (11) becomes: 

[

].
2

)(
3

)(2

4
)(1

)()(

22233

44

2

2

iijiij

ii

ji

j

D

Cji

CDmCDm

CD

dxxpmxE
i

i

−
+

−
−

−
−

=

=−=

∑∑

∫∑∑

σ
,(13) 

 
where Ni is defined in (1) and the borders Ci and Di 
of the Voronoi set Vi are: 
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3. EXPERIMENTAL RESULTS 

 
As a simulation environment we use Matlab® 

R2009B over MS® Windows® XP® Pro SP3. 
First α from (10) is found for different number of 

grid points. The more mi are used the more accu-
rate are the results. For i = 4 and j = k – 3 assuring 
negligible border effects 10, 25, 50, and 100 grid 

points are used. The same experiment is done with 
normally distributed input points in [6], so here a 
direct comparison can be made. The results are 
given in Table 1. 

 
Table 1. Experimentally estimated α for two different  

distributions of the input 
 

Exponent α Grid points 
Normal, [6] Rayleigh 

10 0.2989 0.3480 
25 0.3330 0.3495 
50 0.3331 0.3501 
100 0.3330 0.3509 

 
It is clearly seen that the exponent approxima-

tion is presented here by higher α which is actually 
expected because of the steeper left slope of the 
Rayleigh curve in comparison to the symmetric 
Gaussian one. 

Obviously the values obtained for the Rayleigh 
distribution almost do not depend on the number of 
grids. Now when we have the real case mi found it 
is seen that the exponent of the approximated state 
of the SOM is close to 1/3. This is actually a case 
strongly related with the optimal vector quantization 
[1]. 

Graphically the results from Table 1 are given in 
Fig. 2. 

 

 
 

Fig. 2. Experimentally derived α as a function of the number  
of grid points for two different distributions of the input  

for the SOM 
 
 

4. CONCLUSION 
 
In this paper an approach for finding the station-

ary positions of the nodes of one-dimensional SOM 
has been presented in the case of Rayleigh density 
point input. The results are precise enough taking 
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the advantage of very fast computation. Further-
more the distortion measure of the SOM using finite 
grid is calculated in the general case and it is 
shown that the positions of the nodes could be op-
timized at the stage of initialization. 

The results achieved prove the correctness of 
the suggested approach which is considered useful 
in a large number of practical cases where the input 
data poses Rayleigh point density distribution.  
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