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Abstract 
 
In this paper the author is presented the hardware application of the adaptive Kalman filter algorithm for pattern recognition with 

the FPGA. The adaptive temporal filter is proposed that lend itself to hardware implementation for real-time temporal processing 
of image sequences. Adaptation in this case is with respect to motion in the image sequence as well as variation of noise statistics. 
The project is used the Altera DE2 board to implement a simple hardware design. For describing its behavior use the VHDL lan-
guage and the Altera’s Quartus tools to synthesize and Altera DE2 board to implement a simple hardware FPGA design 

 
 

1. INTRODUCTION 
 
In this paper is presented basic hardware archi-

tecture, using extended Kalman filter-based method 
for calculating a trajectory by tracking features at an 
unknown location on Earth’s surface, provided the 
topography is known, is given in [1]. The proposed 
model is implemented using VHDL and simulated 
and synthesized into an FPGA. The hardware 
design was implemented on an Altera Quartus II 
board. The practical method for using FPGA to 
realize VHDL implementation of the developed 
algorithm using Altera De2 FPGA. The board is 
shown in fig. 1.  
 

 
 
 
 
 
 

 
 

Fig. 1. The Altera DE2 board 
 

 
Fig. 2. Navigation-changes in perceived location of the normal 

point between scan I and scan j are applied to estimate  
position changes 

 
In Fig. 2 R is the delta position vector (dis-

placement vector between scans i, at time ti, and 
scan j, at time tj, in this case); ni is the plane normal 
vector whose components are resolved in the Ladar 
body frame at scan epoch ti; nj is the plane normal 
vector whose components are. Note that in the 
navigation frame, the planar surface normal vectors 
at epoch’s ti and tj are equal since resolved in the 
Ladar body frame at scan epoch tj ; and, ρi and ρj 
are the shortest distances from the Ladar to the 
plane at epochs ti and tj, respectively. stationary 
planar surfaces are assumed. However, expressed 
in the Ladar body frame both normal vectors are 
likely to be unequal due to the body frame rotation 
between epoch’s ti and tj. From the geometry pre-
sented in Fig.1, a relationship can be derived be-
tween the projection of the displacement vector 
(between epoch’s ti and tj) onto the planar surface 
normal vector and the change in the normal point 
range between scans i and j is shown in Eq.1:  

 
  R ni  i   j    (1) 

 
Given M associated planar surfaces, a set of lin-

ear equations like (7) can be set up in matrix form is 
given in Eq.2:  

  H  R      (2) 

Were:  

 

 

 

H 
ni,1

T

M
ni,M

T
















,   r 

i,1   j,1

M
i,M   j,M
















  (3)   

 



CEMA’10 conference, Athens 

 

74 

Note that a minimum of three non-collinear pla-
nar surfaces is required for the observation matrix, 
H, to be non-singular and thus allowing for a unique 
solution of Eq.2. The estimation process is based on 
a complementary Kalman filter methodology [2] 
which employs differences between INS and laser 
scanner observables as filter measurements. Chan-
ges in planar surface ranges between consecutive 
scans are used as laser observables. Correspond-
ingly, laser scanner observables of the Kalman filter 
are formulated as follows for the scan at time epoch 
tm in Eq.4: 
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...
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where N is the number of features for which is 
match is found time epoch tm and tm-1. Equivalent 
observables can be synthesized from INS meas-
urements by transformation of the INS displacement 
vector into the range domain as follows in Eq.5 and 
Eq.6: 

 
 

  
INS(tm)H(tm1) RINS(tm)Cb

n(tm)lb  (5) 

   Cb
n (tm ) Cb

n (tm )Cb
n (tm1)   (6) 

 
The differences between inertial and laser scan-

ner observables Eq.7: 
 
 yKalman (tm )  INS (tm ) LS (tm )  (7) 
 
Particular filter states include: errors in position 

changes between consecutive scans, velocity er-
rors, attitude errors, gyro biases, and accelerometer 
biases in Eq.8:  

 

 x  Rn
T vn

T T ab
T bb

T T   (8) 

 
For this state vector, the observation matrix 

HKalman can be derived directly by augmenting the 
geometry matrix of Eq.3 with zero elements is 
shown in Eq.9: 
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The measurement noise matrix RKalman is de-
rived from the line and planar surface estimation 
processes performing a comprehensive covariance 
analysis of the feature extraction method. Deriva-
tion of the filter state transition matrix and the sys-
tem noise matrix for the filter states chosen em-
ploys a standard Kalman filter formulation. Errors in 
the position estimate are thus transformed into er-
rors in line parameters and add up to line extraction 
errors. As a result, the current position error con-
tributes to the position error for the next scan where 
the new line is used for navigation.  

 
 

2. ADAPTIVE FILTERING 
 
The Adaptive filters are based on dynamically 

adjusting the parameters of the supposedly opti-
mum filter based on the estimates of the unknown 
parameters. Adaptive Kalman filter can be based on 
an on-line estimation of motion as well as the sig-
nal and noise statistics available data. Let x (k) 
represent apixel grayscale on frame k. The ideal 
noise-free pixel value is represented by s (k) which 
is assumed to be a first-order AR model. This is a 
more realistic and simple model that is usually 
used to represent the temporal behavior of pixels in 
video signals[3]. Under this assumption, the pro-
cess and measurement equations:  

 
1. The process model is s(k 1)  as(k)  w(k), 

in which a is a constant that depends on the signal 
statistics and w(k) is the process noise (assumed to 
be a white independent zero mean Gaussian ran-
dom process with variance of w2).  

2. The measurement signal is x(k)  s(k)  v(k) 
in which v(k) is the independent additive zero 
mean Gaussian white noise with variance of v2.   

The noise and signal are stationary random pro-
cesses that are fully determined by their second-
order statistics. The recursive Kalman filter is de-
veloped based on the following definitions: 

1. The filter output is y(k) which is the estimate 
of the signal, at time k . 

2. The estimation error is defined by:  
 2 (k)  Ey(k)  s(k)2}, which is initially un-

known.  
3. Kalman filter gain is presented by K(k).   
 
The overall Kalman filter algorithm is then given 

as follows: 
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In this algorithm, there are several parameters, 

which are unknown in practice. These parameters 
are v2, w2 and a. Based on the aforementioned 
assumptions, the following instantaneous estimates 
can be used to achieve fast and simple implemen-
tation: 

1. Parameter a, defined by  
 Ex (k)x(k 1)- Ex2 (k)}, can be estimated 

by using aˆ  x(k)x(k 1) - x2(k)  x2(k 1)). For 
stability reasons it is suggested to use some a 
priori information about the signal and keep this 
parameter constant.  

2. Simple estimates of: 
v2  Ex (k)  aˆy(k 1)2 well as  
w2  Ey(k)  aˆy(k 1)2, are calculated, in 

turn by  
ˆv2  x(k)  aˆy(k 1)2 and 
ˆw2  y(k)  aˆy(k 1)2 2ˆv2 
Assuming there is a motion, estimates of the 

noise and process variances, ˆv2 and ˆw2, in-
crease which results in less filtering of the signal. 
This will reduce the noise filtering so that it can 
better follow the motion with minimal lagging effect. 
Selection of the threshold  is very important. In 
this case, it can be shown that 2 has 2 distribution 
with one degree of freedom [4]. Kalman filter by 
simulating a sudden change in the signal to repre-
sent motion [5]. In this case the SNR is set to 20dB, 
highest level, namely 99,9% ( 3.29). One ap-
proach to motion estimation is to compare two con-
secutive temporal samples and use their magnitude 
difference to infer existence or non existence of 
motion. When there is a sudden change in the sig-
nal, the difference between ay(k 1) and x(k), with 
a given confidence level, goes beyond its statistical 
variation. Assuming that v2 represents the vari-

ance of the aforementioned differences, then based 
on Gaussian noise [4] distribution, it can be said 
that a motion is present if {[x(k) ay(k 1)]/v} 
< . If the test is positive, then the gain calcula-
tion in the Kalman filter can be reinitiated by as-
suming 2(k) v2. The new gain value significant-
ly reduces the lagging effect while improves the 
noise filtering. Or set both 2(k) and w2 equal to 
v2 and initiate the Kalman gain to (k)  
a21a22 right after the motion. The overall al-
gorithm is Algorithm B.  

 

 
 
 
3. FPGA IMPLEMENTATION 

 
Memory components are used for frame and 

parameter buffers while the FPGA is used for 
pixel and parameter calculations. The system ar-
chitecture shown in Fig.3 illustrates 3 input buff-
ers holding y(k – 1), and 2,w2 and a Altera im-
plementation to calculate updated values for these 
buffers in addition to generating the output y(k).  

 

 
 

Fig. 3. Levels of implementation for Kalman filtering 
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The system can easily operate at 66 MHz clock 
enabling 1024 X 1024 60 Frames operation. Sys-
tem clock rates of 80 MHz and 100 MHz can also 
be achieved for more aggressive system band-
width requirements. The pixel calculation data path 
for y (k) is straight forward once the K parameter is 
calculated. The parallel pipelined structure used 
for the sample processing algorithm involves pre-
subtractions, two input variable multiplier and post-
addition as shown in Fig.4. 

 

 
Fig. 4. Pixel Calculation 

 

After the initial latency a sample y(k) is output 
every system clock. Hardware resources to per-
form this data path operation are approximately 
458 Logic Cells. The parameter calculation is more 
involved and also requires a parallel pipelined 
structure for sample processing since each pixel in 
the frame also has parameters 2 and w2. 

 

Fig. 5. Implementation for filtering 
 

The algorithm requires pre-addition and division 
for the K parameter calculation. To perform the 
comparison for the in quality it can requires pre-
addition and division for the K parameter calcula-
tion. To perform the comparison for the in quality it 
can normalize for,, define D’ and Г’. Using se-
cond compliment function on x(k) – y(k – 1) from 
the pixel calculation, we derive the necessary signal 
for the 2x1 mux parameter selection. The calcula-
tion of new parameters involves an adder, subtract-

er, variable multiplier and loadable constant coeffi-
cient multiplier as shown in Fig. 6. 

 

 
 

Fig. 6. Behavioral simulation of the Kalman Filter 

 

After initial latency a new updated parameter is 
given every system clock. The pixel and parameter 
calculation blocks are latency synchronized such 
that K and x(k) – y(k – 1) are property aligned. 

The output and parameters are aligner such that 
one memory controller can handle reads and writes 
to input buffers. Hardware resources for the para-
meter calculation is approximately 1664 Logic Cells. 

 
Table 1. Synthesis Results 

 
The project includes the creation of parallel 

models respectively Matlab environment and sec-
ondly in Quartus tools. The Altera Cyclone II FPGA 
connected to a variety of peripherals including 512K 
of SRAM, 4MB of Flash, 8MB of SDRAM, VGA out-
put Ethernet, audio input and output, and USB ports.  

No. Information Count % use 

1 No of slice 2145 of 32640 7% 

2 Slice LUTs 3626 of 32640 14% 

3 Slice LUTs Used as 
logic 3626 of 32640 14% 

4 LUT Flip-Fl.pair used 4168  

5 LUT Flip-Fl. pairs 
withan unused FF 2023 of 4168 49% 

6 LUT flip-flop an unsed 
LUT 542 of 4168 17% 

7 Fully used FF pairs 1603 of 4168 41% 

8 Bonded IOBs 82 of 480 21% 

9 DSP48Es 16 of 288 7% 
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4. CONCLUSION 
 
The performance of this implementation can be 

attributed to the parallel hardware blocks used in 
performing the necessary calculations for the algo-
rithm [7]. Further to this, the design can be scaled 
for larger databases by simply adding more pro-
cessing elements in parallel The above hardware 
design was implemented on an Altera Quartus II 
board (clocked at 100 MHz) and was able to opera-
tion time is about 60 clock cycle, which about 0.6us 
at 100MHz clock pulse, so the operation speed can 
be up to 1.5MHz. The whole design requires 4168 
ALUTs and 241 registers (occupancy of resources 
is about 49%).The advantage of parallel processing 
in FPGA leads to a substantial increase in perfor-
mance and accuracy in processing, extraction of 
information than in the simulation in Matlab. It 
should be understood that if there is an impulsive 
noise in the image sequence, this Kalman filter 
algorithm should be used in conjunction with pre-
spatially non-linear filtered frames. The main contri-
bution of the work is design and implementation of 
a physically feasible hardware system to accelerate 
the processing speed of the operations required for 
real time face recognition. The proposed models 
are implemented using VHDL, and simulated and 
synthesized into a single FPGA. It is demonstrates 
that this technology can produce effective and pow-
erful applications systems.  
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