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Abstract 

 
A new Perceptron training algorithm is presented, which employs the piecewise linear activation function and the sum of squared 

differences error function over the entire training set.  
The most commonly used activation functions are continuously differentiable such as the logistic sigmoid function, the hyper-

bolic-tangent and the arc-tangent. The differentiable activation functions allow gradient-based optimization algorithms to be applied 
to the minimization of the error. This algorithm is based on the following approach: the activation function is approximated by its lin-
earization near the current point, hence the error function becomes quadratic and the corresponding constraint quadratic program is 
solved by an active set method.  

The performance of the new algorithm was compared with recently reported methods. Numerical results indicate that the pro-
posed algorithm is more efficient in terms of both, its convergence properties and the residual value of the error function.  

 
 

1. INTRODUCTION 
 
Neural network (NN) models are of board inter-

est to researchers in the recent years, as its appli-
cations have flooded many areas.  

 
The activation function is a key factor in the NN 

structure [1]. The most fuzzy applications use a 
piecewise linear function (PLF) [2] for activation of 
neurons, because of its easy handling from their 
limited computational resources. NNs that use PLFs 
as activation function is known as piecewise linear 
NNs (PWL NNs). These cannot be trained by a 
gradient based optimization method because the 
lack of continuous derivatives. Hence several train-
ing algorithms of PWL NNs have been developed. 
For example the algorithm presented in [3] is used 
to NNs that employs the absolute value as activa-
tion function. In addition, in [4] is proposed a basis 
exchange algorithm.  

 
In this paper a new algorithm for training a PWL 

NN is proposed. The main stage of the method is 
the modification of the training problem to a quad-
ratic programming. This process is briefly described 
in Section 2. The main steps of the algorithm are 
presented in Section 3. Section 4 contains numeri-
cal results. The paper is concluded in Section 5. 

 

2.  MODIFICATION OF PERCEPTRON TRAINING 
TO A CONSTRAINED QUADRATIC  
OPTIMIZATION PROBLEM 
 
A graphical representation of a single hidden 

layer Perceptron with a single output is shown in 
Figure 1. The hidden layer consists of n neurons. 

 

 
 

Fig. 1. Graphical depiction of a single hidden layer Peceptron 
 
In Fig. 1 each neuron passes its input which is 

the weighted sum of the inputs of the network plus 
the input bias term, through its activation function 
f  and presents the result to its output. The pro-
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posed method adopts the 1-dim piecewise linear 
function (PLF) as activation of neurons:  
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where 1=L , its threshold. Obviously, it is nondef-
ferential and bounded between -1 and 1. Its graph 
is given in Fig. 2. It has three linear pieces which 
are locally differentiable and two corners. This form 
of the activation function may be viewed as an ap-
proximation to a nonlinear amplifier.  
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Fig. 2. 1-dim PLF bounded between -1 and 1 
  
Hence the output of the i th neuron, p

iy ,  corre-

sponding to the input of the pth training data px , is 
computed as: 
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where n is the number of neurons, p
jx  is the j th 

element of the N -dim vector px , that is 
,],,,[ 1

Τ= p
N

p
j

pp xxxx KK  ir  the input bias of 

the i th neuron and ijw  the weight connecting the j 
th input to the i th neuron. By considering =iw  

Τ],,[ 1 iNi ww K , (2) is written equivalently as: 

( )1,i
p

i
p
i rxwfy += Τ  for ],,1[ ni K= .  

The output of the network, pz , corresponding 
to the px , is the weighted linear combination of the 
outputs of the neurons plus the output bias: 
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where θ  is the output bias and iω  the weight con-
necting the i th neuron to the output layer. 

For every given training sample, let the p th one, 
the output of the network, pz , differs from the tar-
get (desired) value, pt , by )( pp zt − . The purpose 
of the proposed method is to determine the coeffi-
cients ijw , iω , ir , and θ  in such a way that the 
summed over all training samples squared error, 
between the actual and the target output, to be 
minimized. Hence the total error is selected to be 
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where M  is the number of training samples, r  is 
the vector of input bias, that is ],,[ 1 nrrr K= , W  
is the Nn ×  matrix of the weights connecting the 
inputs to the neurons that is Nj

niijwW ,,1
,,1][ K

K
=
==  

and ω  is the vector of weights connecting the out-
puts of neurons and the output layer of the network, 
that is ],,[ 1 nωωω K= .  

 The following property of the PLF is an easy 
consequence of its definition given by (1): 
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Take into account (5), (4) becomes: 
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To simplify the formula (6), the following trans-

formation is applied: 
 

  , ii ωζ = ΤΤ = iii wb ω , iii rq ω= , ni ,...,1=∀  (7)  
 
Hence the error function (6) is written: 
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where ],,[ 1 nζζζ K= , ],,[ 1 nbbB K=  and 

],,[ 1 nqqq K= . So the training of NN whose layout 
is pictured in Figure 1, is modified to the following 
optimization problem with inequalities constraints: 
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The basic idea of the proposed approach to 

carry out the optimization process for the problem 
(9) is the following: At each algorithm iteration and 
( )pi,∀  the PWF in problem (9) is approximated by 

its linearization at the current point. In doing so the 
problem (9) is modified to a constrained quadratic 
optimization problem. It is remarked that, to be valid 
the linearization has to be restricted within the linear 
piece of the PWF where its current value belongs. 
The validity of the linearization, is assured by set-
ting extra constrains. The resulting quadratic prob-
lem is solved via an active set method [5]. The 
original weights and bias of NN can be obtained by 
applying the inverse of the transformation (7) on the 
solution.  

 
 

3. OVERVIEW OF THE ALGORITHM  
 
The outline of the proposed algorithm is as fol-

lows: 
Initialization 
Input:  

1) )},(),,{( 11 MM txtx K , the training set, 
2) n : the number of neurons, 
3) ε : the threshold for stopping criterion, 

4) ( )oooo
def

o Bqu ζθ ,,,= , the initial point such that 
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Step 1. Let ( )kkkkk Bqu ζθ ,,,=  be the current 
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Step 2. Modify the problem (9) to the corre-
sponding quadratic substituting ( )pi,∀  the PLF for 
its linearization and setting the proper extra con-
straints, so that the linearizations to be valid.  

Step 3. Apply the active set quadratic program-
ming algorithm. Firstly, determine the feasible de-
scent direction, *d . If ε<*d  the algorithm ends, 

otherwise determine the maximum step length a , 

in this direction, for point *1 dauu kk ×+=+  to 
be feasible.  

Step 4. Set 1+= kk  and go back to Step 1. (For 
some },{ pi  at the new point ku  the PLF attains a 
corner of its graph. In these cases the linearization 
consider the other linear piece. As a result both the 
objective function and the extra constraints of the 
quadratic problem change at each iteration of the 
algorithm).  

[6] provides a detailed description of both the 
modification process and the relative algorithm.  

 
 

4. SIMULATION RESULTS 
 
Two benchmark problems were selected from 

[7]. The simulation results confirm the effectiveness 
of the algorithm in terms of both accuracy and 
speed. The algorithm was developed using Matlab. 

 
4.1. 1-dim Function approximation  

 
The desired function is the following: 
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As in [7], it was used 20 ))(,( xfx -samples with 

x  in )1,0(  randomly chosen, as the training set of 
two neurons NN. The new algorithm run 50 times 
using each time different random starting weights 
and bias in )1,0( . All times the algorithm was 
reaching the termination after 4 iterations and the 

final sum squared error =SSE  ∑
=

−
20

1

2))((
p

pp zxg  

was 4106 −× . These are better performances than 
most in [7].  

Furthermore, the algorithm is tested to approxi-
mate g  over a larger domain. So, the algorithm 
used 20 random samples within )9,0( , as the train-
ing set of 3 neurons NN and is tested for 50 differ-
ent random starting weights and bias, in )1,0( . The 
final SSE  fluctuated between 4109.1 −×  and 2103.2 −×  
after 19 and 39 iterations correspondingly. In Figure 
1 it is shown the approximation of g  from the out-
put of NN with the best performance. 
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Fig. 3. The output of NN after training with the new algorithm 

 
 
4.2. 2-dim Exclusive OR problem  

 
In this example a two neurons NN is trained to 

output a 1, when its input is (0,0) or (1,1), and a 0, 
when its input is (0,1) or (1,0). The new algorithm 
run 50 times using each time different random start-
ing weights and bias in )1,0( . All times the algo-
rithm was reaching the termination after 10 itera-
tions and the final SSE  was 5105.2 −× . These 
are by far better performances than most in [7].  

 
 

5. CONCLUSION 
 
A new training algorithm for a single layer NN 

with a single layer output is introduced in this work. 
Making use of PLF as activation of neurons, it modi-
fies the training problem to a constrained quadratic 
optimization problem. Numerical results confirm its 
effectiveness compared to other algorithms. 
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