
 

PORTABLE EQUIPMENTS FOR REMOTE MONITORING OF HEART 

ACTIVITY IN TELEMEDICINE 

Deyan M. Milev 

Faculty of Telecommunications, Technical University of Sofia, Bulgaria 

1000 Sofia,  “Kliment Ohridski” str. 8 

E-mail: dmilev@tu-sofia.bg 

 
 

Abstract 

 
In this paper we describe the software development of a 12-
lead ECG. 

The device is designed to capture the 12-lead ECG and 
transmit it via Bluetooth to a standard personal computer. The 
personal computer can then be used to store, display or print 
the recorded ECG. 

The software was developed using Visual Basic and is de-
signed to run on any device supporting the .NET Framework.  

Further work is required to refine the developed software to 
support enhanced visualization and storage of the recorded 
data. 

 

1. Introduction 

Bluetooth technology is intended to replace the ca-
bles connecting portable and/or fixed devices while 
maintaining high levels of security.  

A fundamental strength of Bluetooth wireless tech-
nology is the ability to simultaneously handle data 
and voice transmissions which provides users with 
a variety of innovative solution such as hands-free 
headsets for voice calls, printing and fax capabili-
ties, and synchronization for PCs and mobile 
phones, just to name a few. The range of Bluetooth 
technology is application specific. 

Bluetooth technology operates in the unlicensed 
industrial, scientific and medical (ISM) band at 2.4 
to 2.485 GHz, using a spread spectrum, frequency 
hopping, full-duplex signal at a nominal rate of 1600 
hop/sec. The 2.4 GHz ISM band is available and 
unlicensed most countries. 

Bluetooth technology’s adaptive frequency hopping 
(AFH) capability was designed to reduce interfer-
ence between wireless technologies sharing the 2.4 
GHz spectrum. AFH works within the spectrum to 
take advantage of the available frequency. This is 
done by the technology detecting other devices in 
the spectrum and avoiding the frequencies they are 

using. This adaptive hopping among 79 frequencies 
at 1 MHz intervals gives a high degree of interfer-
ence immunity and also allows for more efficient 
transmission within the spectrum. For users of Blue-
tooth technology this hopping provides greater per-
formance even when other technologies are being 
used along with Bluetooth technology. 

The EKG device detects and amplifies the tiny elec-
trical changes on the skin that are caused when the 
heart muscle depolarizes during each heart beat.  

Devices on the market that analyze ECGs, such as 
patient monitors, stress test systems, and holter 
analysis systems, do a good job of detecting beats 
and classifying arrhythmias.  

This software implements the basic ECG analysis 
functions of beat detection and classification as C 
function. This release includes three version of beat 
detector. Two are general-purpose beat detection, 
where one represents a more efficient version with 
slightly different performance characteristics. The 
third beat detector is more computationally efficient, 
uses very little memory, and is embedded in a pro-
gram that performs beat classification functions and 
may be used alone in applications that do not re-
quire beat classification. 

 

2. Main text 

Fig. 1-1 shows the basic operations of the beat de-
tection algorithm. The beat detection algorithm can 
be broken down into two sections, the filters and the 
detection rules. This present release contains three 
versions of QRS detector. All three versions use the 
same filters and differ primarily in the details of the 
detection rules and code implementations. 

The filters signal to generate a windowed (time lim-
ited) estimate of the energy in the QRS frequency 
band.  

• Low pass filtering, 
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• High pass filtering,  

• Taking the derivative,  

• Taking the absolute value of the signal 

• Averaging the absolute value an 80 ms 
window. 
 

 

Figure 1-1. Beat detection operations 

The final filter output produces what might be called 
a lump every time a QRS complex occurs. T-waves 
generally produce smaller lumps than QRS comple-
xes. The high pass, low pass, and derivative com-
bine to produce a bandpass filter with a pass band 
from 5 to 11 Hz, roughly the bandwidth that con-
tains most of the energy in the QRS complex. The 
theory and implementation of these filters are de-
tailed in [1], [2], and Biomedical Digital Signal Proc-
essing [3].  

In [1] and [2], the filtered signal was squared rather 
than rectified. This operation caused the QRS de-
tector to be somewhat gain sensitive. In this imple-
mentation I have used the absolute value, reducing 
the gain sensitivity and slightly improving the per-
formance of the algorithm. The averaging windows 
was chosen to be roughly the width of a typical 
QRS complex. In the original algorithm this window 
was 150 ms wide to allow for the wide QRS com-
plexes produced by Premature Ventricular Contrac-
tions (PVCs).  

Since then, it has been shown that a narrower win-
dow produces better results [4]. 

After the signal has been filtered, QRS detects 
peaks in the signal. Each time a peak is detected it 
is classified as either a QRS complex or noise, or it 
is saved for later classification. The algorithm uses 
the peak height, peak location and maximum de-
rivative to classify peaks. The following is an outline 
of the basic detection rules for the algorithm. 
 
1. Ignore all peaks that precede or follow larger 

peaks by less than 200 ms. 
2. If a peak occurs, check to see whether the raw 

signal contained both positive and negative slo-
pes. If not, the peak represents a baseline shift. 

3. If the peak occurred within 360 ms of a previ-
ous detection check to see if the maximum de-
rivative in the raw signal was at least half the 
maximum derivative of the previous detection. If 
not, the peak is assumed to be a T-wave. 

4. If the peak is larger than the detection threshold 
call it a QRS complex, otherwise call it noise. 

5. If no QRS has been detected within 1.5 R-to-R 
intervals, there was a peak that was larger than 
half the detection threshold, and the peak fol-
lowed the preceding detection by at least 360 
ms, classify that peak as a QRS complex. 

The rules as outlined above are implemented in 
QRSDET and detailed in [1] and [2].  

The detection threshold used in 4 and 5 above is 
calculated using estimates of the QRS peak and 
noise peak heights. Every time a peak is classified 
as a QRS complex, it is added to a buffer contain-
ing the eight most recent QRS peaks. Every time a 
peak occurs that is not classified as a QRS com-
plex, it is added to a buffer containing the eight 
most recent non-QRS peaks (noise peaks). The 
detection threshold is set between the mean or me-
dian of the noise peak and QRS peak buffers ac-
cording to the formula: 

Detection_Threshold = Average_Noise_Peak + 
TH*(Average_QRS_Peak Average_Noise_Peak) 

where TH is the threshold coefficient. Similarly, the 
R-to-R interval estimate used in 5 is calculated as 
the median or mean of the last eight R-to-R inter-
vals. Originally, I estimated average QRS peak val-
ues, noise peak values, and average R-to-R inter-
vals using the median of the last eight values. The 
beat detector must begin with some initial threshold 
estimate. In order to make an initial estimate, I de-
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tect the maximum peaks in eight consecutive 1-
second intervals. These eight peaks are used as 
are initial eight values in the QRS peak buffer, I set 
the initial eight noise peaks to 0, and I set the initial 
threshold accordingly. I initially set the eight most 
recent R-to-R intervals to 1 second.  

 

3. Illustrations 

The proposed ECG telemedicine system is divided 
in several functional blocks: a DAM, an Access 
Point and local or remote station supporting tele-
medicine software application Figure 3-0. Firstly, 
the DAM is the device in charge of the acquisition, 
digitalization and processing of patient’s ECG sig-
nals. Once the data is processed, it can be stored in 
a memory card for posterior inspection, or it can be 
wirelessly transmitted via Bluetooth to an AP or via 
USB to a local monitoring station [8]. 

 

 

Figure 3-0 

Secondly, the AP is a device located in a place near 
the patient which maintains connection between the 
DAM and the remote station via Internet/Intranet 
using TCP/IP. This connection could be continuous 
or event driven, t.e. when a risk situation is detected 
[9].  

Finally, the local and remote stations run applica-
tions to visualize, analyze and store the information 
received from each patient.  

UART interface is a standard 4 – wire interface with 
adjustable baud rates from 1200bps to 3Mbps [6]. 
 
3.1. Figure and table captions 

Bluetooth supports multiple connections up to 4 
slave units. There are two types of multiple connec-
tion modes: Multi-Drop Mode and Node Switching 
Mode. 

 

Figure 3-1. Multi-Drop Mode 

 
In Multi-Drop Mode a master unit can connect to 
maximum 4 slave units at the same time and they 
transfer data bi-directional as in Figure 3-1. 
 

 

Figure 3-2. Node Switching Mode 

In Node Switching Mode, the master unit maintains 
multiple connections with maximum 4 slave units 
but only one connection with one slave unit is active 
and data is transferred as shown in Figure 3-2.  

Bluetooth compatibility is attained with an OEM 
module from BlueRadios, the BR-C30 Class 1[5]. 
This module is configured using AT commands and 
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accepts or establishes connections with other de-
vices using Serial Port Profile (SPP) conforming to 
Bluetooth V1.2. The default communication baud 
rate is 115.2 kbps. 

Performance at different sample rates-all filter 
lengths and time related constants scale with sam-
ple rate changes so that the constants and filter 
lengths are equivalent to the constants and filter 
lengths in the 200/100 samples-per-second imple-
mentation. Ideally, implementations at other sample 
rates would perform the same as the 200/100 sam-
ples-per-second implementation, but round off ap-
proximations in constants and filter lengths result in 
slight differences in performance [7]. 

Table 3-1 lists the sensitivities and positive predic-
tivities for beat detection and beat classification for 
three combinations of base rate and beat rate. 
 

Base 

Rate 

Beat 

Rate 

QRS 

Sens. 

QRS 

+Pred. 

PVC 

Sens. 

PVC 

+Pred. 

200 100 0.9975 0.9981 0.9371 0.9664 

250 125 0.9974 0.9981 0.9359 0.9597 

300 150 0.9974 0.9979 0.9303 0.9665 

Table 3-1. Beat Detector and Classifier Performance  
at Different Sample Rates 

Table 3-2 lists the sensitivities and positive predic-
tivities for beat detection alone on a wider range of 
sample rates [10]. Performance differences only 
seem significant when the base sample rate is 
dropped as low as 100 or 125 SPS [11]. 

 

Sam. 
Rate 

QRS 
Sens. 

QRS 

+Pred. 

QRS 

Sens. 

QRS 

+Pred. 

100 0.996856 0.997905 0.995839 0.996423 

125 0.997426 0.998257 0.99666 0.996788 

150 0.997458 0.998016 0.997429 0.997652 

175 0.997601 0.998093 0.997119 0.997268 

200 0.997426 0.998071 0.997397 0.997588 

225 0.997228 0.997994 0.997268 0.997769 

250 0.997502 0.99806 0.997087 0.9973 

300 0.99736 0.998016 0.99745 0.997897 

325 0.997448 0.997874 0.997578 0.997684 

360 0.997535 0.998038 0.997503 0.997865 

Table 3-2. Beat Detector Performance  
at Different Sample Rates 

4. Conclusion 

An 12-lead ECG telemedicine device for non-cli-
nical applications has been successfully developed 
and tested for two particular functions: ecg-holter 
and on-line transmission. Since, all memory cards 
tested exceed the usual sampling rate for holter 
mode, the TransFlash was selected because it is 
smaller than the others. Further study will be carried 
out to test transmission reliability in the presence of 
a variety of standard consumer electronics, e.g. 
cordless phones and WiFi devices operating in the 
same frequency band that may adversely affect 
data transmissions via Bluetooth at different dis-
tances. 

Furthermore, data compression algorithms will be 
studied to optimize memory card usage by reducing 
records size and power consumption due to data 
writing. Finally, an agent-based Java application is 
being developed to provide analysis and detection 
of arrhythmia using several vital-sign signals. 
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