

USING GENETIC ALGORITHM FOR ROUTING

Valentin Hristov
*
, Boris Tudjarov

**

*
Department of Computer Systems and Technology at South West University

66, Iv. Mihajlov, 2700 Blagoevgrad, Bulgaria

E-mail: v_hristov@swu.bg

**
Department of Design Fundamentals, Technical University – Sofia

8, Kl. Ohridski blvd, 1000 Sofia, Bulgaria

Abstract

The present paper presents a program for Routing based on
Genetic Algorithms. The most popular routing protocol is
Open Shortest Path First- OSPF based on finding a minimum-
length (cost) route between a given pair of nodes. It was pro-
posed by Dijkstra and has been widely researched. The
Dijkstra algorithm is considered as the most efficient method
but when the network is very big, then it becomes inefficient
since a lot of computations need to be repeated. Also it can
not be implemented in the permitted time. The purpose of
present paper is to propose a program based on genetic algo-
rithm which to solve above problem as looking for routes with
minimum cost between source and destination.

Keywords – Genetic Algorithms, Open Shortest Path First -
OSPF.

1. Introduction

Nowadays the most popular routing protocol is
Open Shortest Path First- OSPF based on finding a
minimum-length (cost) route between a given pair
of nodes. It is based on the Bellman optimization
theory. But when the network is very big, then it be-
comes inefficient since a lot of computations need
to be repeated. Also it can not be implemented in
the permitted time.

The purpose of present paper is to propose a pro-
gram based on genetic algorithm which to solve
above problem as looking for routes with minimum
cost between source and destination.

2. Genetic Algorithms

The biological foundations of the genetic algorithms
(GA) are explained very briefly below.

The complete set of genetic material (all chromo-
somes) is called genome. Chromosomes consist of
genes, blocks of DNA, each gene encodes a spe-
cific protein.

During the reproduction, the genes of the parents
formed an entirely new chromosome by recombina-
tion (or crossover). New produced offspring then
undergo mutation, i.e. elements of DNA change.
Adaptability of the organism is measured by the
success in his life.

GAs are used when pursuing a specific result (ob-
jective), when the solution requires a relatively large
time resource or in cases where the solution is not
known or has no solution. Algorithm starts with a
set of solutions (represented by chromosomes with
specific information about genes) called initial popu-
lation. According to their viability are chosen solu-
tions to form the next population (offspring). To mo-
re appropriate decisions (decisions are compared in
terms of pursued result/goal) are given better chan-
ces for reproduction. New population is expected to
be better than the old. This is repeated until some
condition (for example: a number of generations or
a sufficiently good solution) is satisfied.

The sequence in the genetic algorithm can be re-
presented as follows:

1) generate initial random population of n chro-
mosomes (solutions);

2) calculating the viability f (x) of each chromo-
some in the population n (in the target function -
called "fitness function") and identification of chro-
mosomes with priority for the next population (m in
number, m <n);

3) establishing a new population by repeating
following steps until the new population is com-
pleted:

3.1) preserving the predetermined number m of
the best solutions (according to their fitness - the
fitness function values);

3.2) election of two parental chromosomes of m
chromosomes;

3.3) using of crossover to cross the parents to
form the next generation (children);

CEMA’11 conference, Sofia 71

3.4) using of mutation to mutate the newly cre-
ated chromosomes;

3.5) pasting the new generation in the new
population (adding n-m new chromosomes and fill-
ing the population);

3.6) replacement- using newly generated popu-
lation for the further implementation of the algo-
rithm;

4) stop and return the report if the final check-
condition is satisfied;

5) loop, go to step 2).

In [1], [2], [3] are represented several interactive
Java applets for the demonstration of the perform-
ance of genetic algorithms.

3. Program using Genetic Algorithm
 for Routing

As a special kind of stochastic search algorithms,
genetic algorithm is a problem solving method
which is based on the concept of natural selection
and genetics. Genetic algorithms are inspired by
Darwin's theory about evolution. Algorithm is started
with a set of solutions (represented by chromoso-
mes) called population. Solutions from one popula-
tion are taken and used to form a new population.
This is motivated by a hope, that the new popula-
tion will be better than the old one. Solutions which
are selected to form new solutions (offspring) are
selected according to their fitness - the more suit-
able they are the more chances they have to repro-
duce. This is repeated until some condition (for ex-
ample number of populations or improvement of the
best solution) is satisfied. The space of all feasible
solutions (it means objects among those the de-
sired solution is) is called search space. Each point
in the search space represents one feasible solu-
tion. Each feasible solution can be "marked" by its
value or fitness for the problem. We are looking for
our solution, which is one point among feasible so-
lutions - that is one point in the search space.

Figure 1 shows the Source code of proposed pro-
gram (in Python Programming Language).

When initializing the population, proposed algorithm
starts from the SOURCE. The algorithm selects one
of the neighbours provided that it has not been
picked before. It keeps doing this operation until it
reaches to DESTINATION. Both SOURCE, and
DESTINATION are constants that user may change
as they wish. If we are solving above problem, we

are usually looking for route, which will be the best
among others.

The evaluation function takes a path in the popula-
tion. It gets the distance between each node pair in
the path, by calling a function to read from the dis-
tance array. Adds them together and returns the
sum as the cost of the path.

The program selects two individuals from the popu-
lation with the lowest costs.

The crossover function takes two parents to mate. It
looks for the common points in the parents. The
common nodes are where these two paths inter-
sect. Among the common points, the program se-
lects one of them randomly. It makes the crossover
from that point.

The search space can be whole known by the time
of solving a problem, but usually we know only a
few points from it and we are generating other
points as the process of finding solution continues.
The evaluation function takes a route in the popula-
tion. If the offsprings’ fitnesses are less than the
nodes with maximum fitnesses in the population,
we replace them with the nodes with the maximum
fitnesses.

An experiment is developed and realized. The net-
work topology has 20 nodes connected with 62
links as in [6]. We set two nodes as source and
destination. Each link has a cost associated with
them. The costs on the links are stored in matrix
20x20 (dist.txt). In this matrix, the cells with 10,000
in them represent that there is no direct link be-
tween those nodes. The program uses also a file
(parents2.txt) with initial population [7].

We run the steps selection, crossover, and replace
part 50 times i.e. number of generations

(Crossover probability is chosen 0.99 and mutation
probability- 0.1).

On Fig. 2 is represented a part of generated, after
calculations, report and more precisely path cost
(the minimum, maximum, and average numbers)
versus number of generations. As it can be seen
from the Fig.2 the program gets close to optimum
very quickly.

72 CEMA’11 conference, Sofia

CEMA’11 conference, Sofia 73

0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

max

min

avg

Fig. 2. Path costs versus number of generations

4. Conclusion

In present paper, we propose a program based on
genetic algorithm which efficiently solves the routing
problem in computer networks and more precisely
looking for routes with minimum cost between
source and destination.

References

[1] Туджаров Б., В. Пенчев, В. Христов, XML Моде-
лиране на генетични алгоритми, Българско спи-
сание за инженерно проектиране, брой 8, март
2011г, с.75-80.

[2] Tudjarov B., N. Kubota, V. Penchev, V. Hristov, Web
based Modeling and Calculation of Genetic Algo-
rithms, Proceedings of the IWACIII'2011, China (ac-
cepted).

[3] www.obitko.com (accessed February 18, 2011).

[4] www.php.net (accessed February 18, 2011).

[5] cisco.netacad.net (accessed September 2, 2011).

[6] http://www.bilalgonen.com/research/publications/GA
_shortest_path_BilalGonen.pdf (accessed Septem-
ber 2, 2011).

[7] cst.swu.bg/~vhristov/GA_for_Routing.zip (accessed
September 2, 2011).

