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Abstract 

Diffraction of an unsymmetrical electromagnetic wave by a long pipe coaxially oriented inside an infinite waveguide is considered. 
The corresponding boundary value problem is reduced to a system of singular integral equations concerning the Fourier component 
of the surface current density. The exact solution of the above system of equations is constructed by the Wiener-Hopf-Fok method in 
a class of analytical functions and it is defined in the form of sum of partial waves. 

 

1. Introduction 

Unsymmetrical Enm (electrical or TM) and Hnm (magnetic or TE) waves (m = 1, 2, 3, …) differ from symmetrical 
waves (m = 0) that the diffraction field of unsymmetrical waves is characterized by two scalar functions which 
correspond to a longitudinal component of electric and magnetic Hertz’s vectors according to the following 
equations [1]:  

 0sin( ) ( , )e
z m r zΠ = ϕ + ϕ Π ,   0cos( ) ( , )m

z m r zΠ = ϕ + ϕ Π% . 

The presence of the two Hertz potentials complicates the derivation of the boundary value problem by Wiener-
Hopf-Fok method [2, 3]. However the exact solution of this problem can be obtained by some generalization of 
the corresponding axially symmetrical problem.  

Electromagnetic fields are expressed in terms of the functions Π  and Π%  as follows:  
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The constant angle ϕ0 is determined by polarization of the wave impinging on the end of the circular wave-
guide. 

Note that electromagnetic field of mnE  waves is defined by electric Hertz function Π  from the abovemen-

tioned formulas, and electromagnetic field of waves mnH   by magnetic Hertz function Π% .  

Thus  it is necessary to consider jointly  unsymmetrical waves 1mE , 2mE , … and 1mH , 2mH , … for the 

given value m (m=1, 2, 3 …), as they are transformed each other at reflection from the end of the waveguide.  

2. Statement of the problem 

Let two waves are incident from the right to the left  at the end of the long pipe with infinitely thin wall of radius 
a1 located coaxially in the basic waveguide of radius a: one is unsymmetrical TM-wave with amplitude A and 

wave number h and the other is unsymmetrical TE-wave with amplitude B and wave number h%  (fig. 1). 

 

Fig. 1 

 
The problem solution should satisfy the following boundary conditions: 
 

 0zE Eϕ= =  at ,r a z= − ∞ < < ∞ ; r=a1, 0 z l≤ ≤ , (1) 

 1 1( 0, , ) ( 0, , ) 0z zJ H a z H a zϕ = − ϕ − + ϕ =  at 0z < , z l> , (2) 

 1 1( 0, , ) ( 0, , ) 0zJ H a z H a zϕ ϕ= + ϕ − − ϕ =  at 0z ≤ , z l≥ , (3) 

where Jϕ , zJ are azimuthally and longitudinal components of the surface current density.  

The electrical and magnetic Hertz functions Π and Π%  should be the solutions of the equation: 
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3. Solution of the problem 

We are looking for Hertz functions according to equation (4) in the following form [1]: 
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J ( )m x  is the Bessel function, N ( )m x  is the Neumann function, С is the integration contour in the complex 

plane w lying along the real axis and consisting of an infinitely narrow loop enveloping a point h and h%  from 
below, F and F are the decision functions.  

The boundary value problem is reduced with the help of the boundary conditions (1) – (3) to the system of the 
following functional integral equations:  
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where the following notation is introduced :  1L L( , )a w≡ ,  1( , )L L a w′≡ . 

Taking into account that the edges of the pipe are secondary sources of waves, the Fourier-component of the 
current density is constructed by Wiener-Hopf-Fok method as a sum from two analytical sources in the form of 
natural space harmonics forward and backward: 
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where 1C , 2C , 2D , 1A , 2A , 1B , 2B , 2F  are constants, 1 ( )C w+
, 1 ( )E w+

 are analytical functions on 

the upper complex w plane, 2 ( )C w−
, 2 ( )E w−

 are analytical functions on the lower complex plane. 

As the integral along an infinitely narrow loop of the contour C corresponds to amplitude of the incident wave, 

it is easy to calculate the values of the following constants: 
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Similarly we have 
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By substituting expressions (11), (12) into the system of the integral equations (7) - (10) and closing the inte-

gration contour C in the upper half-plane or in the lower half-plane along the infinite semicircle according to 
Jordan's lemma, it is easy to obtain the system of the linear algebraic and functional equations, as following: 
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where nw  are the zeros of L−  (n = 1, 2, …), 
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It is necessary to note, reasonably, the convergence of the infinite series, on account of exponential conver-
gence, and in consideration of all traveling spatial harmonics and of some damped harmonics with imaginary 
wave numbers. Thus, the boundary value problem was reduced to the solution of a finite system of linear al-
gebraic equations. 
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