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Abstract 
 

Convex optimization techniques are widely used in the design 
and analysis of communication systems and signal processing 
algorithms. In this paper a novel recurrent neural network is 
presented for solving nonlinear strongly convex equality con-
strained optimization problems. The proposed neural network 
is based on recursive quadratic programming for nonlinear 
optimization, in conjunction with homotopy method for solving 
nonlinear algebraic equations. It constructs generally a non-
feasible trajectory which satisfies the constraints as . The 

boundedness of solutions and the global convergence to the 
optimal point of the problem are proven. The correctness and 
the performance of the proposed neural network are evaluat-
ed by simulation results on illustrative numerical examples. 

 
1. Introduction 

 
The use of convex optimization is ubiquitous in 
communications and signal processing. Many prob-
lems in these fields can be converted into convex 
optimization problems, which greatly facilitate their 
analysis and numerical solutions [1]-[2].  

Consider the following equality constrained optimi-
zation problem: 

(P)  (1) 

where , A an matrix with  
and b an m vector. We make the following assump-
tion, standard for quadratic approximation pro-
gramming: 

Assumption: (a) The function  is strongly convex 

and twice continuously differentiable in . (b) The 
matrix A has full rank. 

Since Tank and Hopfield’s pioneering work [3]-[5] 
on linear programming neural network and ana-

logue circuits, the recurrent neural network ap-
proach for solving nonlinear programming has re-
ceived a great of attention in the last two decades, 
see [6]-[13] and the references therein. Different 
approaches towards designing such networks have 
been developed. Some neural networks employed 
penalty functions [3]–[7], or the logarithmic barrier 
function [8], while others [9]-[10] make direct use of 
the Lagrangian function. In [11] a neural network for 
solving linear projection equations is described. 
More recently, neural networks based on gradient 
projection method for nonlinear programming are 
designed [12]-[13]. 

The proposed neural network does not make use of 
a penalty function or of a projection equation. It 
solves the problem directly, based on a combination 
of the recursive quadratic programming [14] and the 
continuous Newton-Raphson method [14] for solv-
ing the constraint equations.  

The reminder of the paper is organized as follows. 
The new neural network description is presented in 
Section II. In Section III we prove the global con-
vergence to the optimal point of (P). Illustrative ex-
amples are given in Section IV. Finally Section V 
concludes the paper. 

2. Derivation of the proposed neural  
    network 

Let  be the 
Lagrangian function for problem (P), 

where  is the vector of Lagrangian multi-
pliers.  
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Since  is strongly convex, It is well known [14] that 

if the optimal point of (P)  exists, then it is unique, 

and also there exist vector  such that: 

 and  , where 

. 

In the first instance, we consider the following sys-
tem of implicit ordinary differential equations: 

 (2.1) 

 (2.2) 

where  the solution of system (2) with 

initial point  and ρ posi-

tive constant. Obviously, the norms of  
and the equality constraints are decreasing along 
the solution of system (2). Differentiation of (2) with 
respect to t gives: 

 

 

where stand for  and  respectively.  

Since  the above 

system in matrix form is written as: 

 
The system (3) is linear with respect of the vector 

. We solve the system via QR decomposi-

tion of the matrix A [15]. Namely, A is decomposed 
as: 

 

where Q is an unitary matrix, R is an  
upper triangular matrix. The matrices Q1 and Q2 
consist of the first m and the last n-m columns of Q, 
respectively. Under the Assumption, the matrix 

 is invertible. So the system (3) can be 

solved for  yielding: 

 

(4.1) 

 

 (4.2) 

where: 

, 

, 

, 

In the following proposition a Lyapunov function for 
dynamical system (4) is given. 

Proposition: Let the Assumption hold, then the func-

tion  be defined as: 

 

is decreasing along the solution of (4) and ap-

proaches zero as time tends to infinity, where  
is the Euclidean norm. 

Proof: Finding the directional derivative of  
in the direction of the solution of (4) we obtain 

 

 

where  and  denote the gradients with re-

spect to  and , respectively. 

Since the systems (3) and (4) are equivalent, from 
(3) we have 

 

 
which means that  

 

From (5) it follows that the function is de-
creasing exponentially along the solution of (4). 
This proves the assertions of the proposition.  

The dynamics of the proposed neural network are 
defined in explicit form, by the system of differential 
equations (4.1). This is an autonomous dynamical 

system for , since the multipliers  on its 
right hand side has been eliminated. A block dia-
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gram realization of our neural network is given in 
Fig.1.  

 
 

Figure 1. Block diagram realization of the proposed neural 
network 

 

3. Global convergence  

The solution of a dynamical system is said to be 

globally convergent to a point  if for any initial 

point   This result 
can be derived [16] by the boundedness of the solu-

tion , and the existence of a Lyapunov function 

with zero gradient at . 

Theorem: Let the Assumption hold, and let  be 
the unique minimize of problem (P). Then the solu-
tion of (4.1) starting from any initial point, is bound-

ed, extends to infinite time and converges to , i.e. 

 

Proof: The following relationships are used 
throughout this proof 

 

. 

We shall first show that the solution  of (4.1) is 
bounded. It holds that  

 (6) 

Premultiplication (4.1) by  after 
simple algebra, we get 

 

This simply states that  hence 

 are bounded along the solution of 
(4.1). From this result and Proposition we have that 

 is also bounded along the solution of 

(4). Since  it fol-

lows that  is also bounded. 

Premultiplication (4.1) by  after 
simple algebra, we get 

 

 

 

 

At this point we use the strongly convexity of the 
objective function, so it holds that [14] 

 
From the above property and the boundedness of 

 and  , it follows that 

for some finite  it holds that 

 

 

This result means that when  

touches a finite upper bound, it will start to de-
crease along the solution of (4.1), therefore 

 is bounded. Thus from (6) the so-

lution of (4.1) is bounded, hence it extends to infi-

nite time [16]. Since  is bounded, It can be 

proved easily from (4.2) that  is also bounded.  

Let the set D be defined as: 

 

where is the function of Proposition 1. Then 
from (5) we have  

 
} 

hence because of the Assumption . 

Since  is bounded and satisfies Prop-
osition, from LaSalle’s Theorem [16] it follows 

that , as . 

This competes the proof. 
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4. Numerical Examples 

The performance of our neural network is evaluated 
by using MATLAB for several test problems. In this 
section two illustrative examples are given. Exam-
ple 1 has quadratic objective function and satisfies 
both parts of Assumption. To demonstrate the ef-
fectiveness of our neural network in more general 
optimization problems, we choose Example 2, who-
se objective function is a Gaussian as shown in Fig. 
2, that is pseudoconvex. So, Example 2 satisfies 
only the part (b) of Assumption. 

Figure 2. The 2D Caussian function of Example 2 

 

Example 1: Consider the following strongly convex 

problem [6], with  and  : 

 

where  and 

 

This problem has a unique global minimizer at  
[0.08824674 0.010828343 0.27326648 0.50466163 
0.38281032 -0.30970696], written to eighth decimal 

place. The trajectories  obtained by the pro-

posed neural network with , starting from 
five random non-feasible initial points in (-1 1), are 
shown in Fig.2a. Fig.2b shows the convergence of 
the cost function for each case. At the end of the 

simulation, all trajectories reach  with final error 

 of order 10-6.  
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Figure 3. Example 1: (a) Trajectories  of the pro-

posed neural network for 5 random initial points and (b) 
the corresponding cost functions, vs time 

 

Example 2: Consider the following pseudoconvex 

optimization problem [9], with  and  : 

 

where  and . 

This problem has a unique global minimizer at  
[0.62745172 0.500937796], written to eighth deci-
mal place. Fig. 3a shows the trajectories of the pro-

posed neural network with , starting from 
fifteen non-feasible initial points, random generated 
from the uniform distribution over (0,1). Fig.3b 
shows the convergence of the cost function for 
each case. At the end of the simulation, all trajecto-

ries reach  with final error  
of order 10-6.  
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Figure 4. Example 2: (a) Trajectories  of the pro-

posed neural network for 15 random initial points and (b) 
the corresponding cost functions, vs time. 

 

5. Conclusions 

In this paper a recurrent neural network for strongly 
convex constrained optimization problem is pre-
sented, based on quadratic approximation method 
for nonlinear programming. If initial point is non-
feasible, the proposed neural network defines a 
non-feasible trajectory which satisfies the con-

straints as . Global convergence is proven. 
Simulation on illustrative numerical examples sub-
stantiates the effectiveness and the correctness of 
the proposed neural network. 
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