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Abstract 
 
The method of compressed cosines is used for mathematical approximations. With it, polynomials of a low order are obtained that 
approximate with high accuracy ideal functions with rectangular contours. Up till now it has been used for synthesis of digital filters 
for one-dimensional signals. This paper considers the application of the method for synthesis of two-dimensional digital filters. Filters 
are obtained with characteristics close to the ideal ones. 

 
 
1. INTRODUCTION 

 
In every technical device using information sig-

nals the purpose of filters is to separate the signals 
necessary for its functioning and to suppress all 
others that are interference to it. The ideal filter is a 
rectangular contour. This is a function of the fre-
quency   having two regions: passband (PB) – the 
function is equal to unity, and stopband (SB) – the 
function is equal to zero. It is defined by the expres-
sion 
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where c  is the cutoff frequency. 

A filter with an ideal response cannot be real-
ized. This is why the ideal function is approximated 
with another one that can be realized by technical 
means. The task is to define such an approximation 
function that is very close to the ideal one, and that 
has a low computational complexity. The approxi-
mating functions can be fractional rational, spline 
functions, polynomials, etc. For technical devices 
the fractional rational approximations have the best 
properties but in many cases they are not applica-
ble. In such cases polynomial approximations are 
used. 

A very important factor in these mathematical 

tasks is the criterion (metric) pL , 1p    used 

for approximating the ideal function. Fig. 1 shows a 

comparison among the most used metrics 1L , 2L  

and L  in approximations with polynomials of 32nd 

degree. It is seen that in filter synthesis a compro-
mise has to be found between two contradictory 
requirements: the amplitude of the oscillations and 
the steepness of the function in the transition band 
– the band in which the function goes from unity to 
zero. In all the criteria the function has oscillations 
in the passband and the stopband that are propor-
tional to the degree of the polynomial.  
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Fig.1. Approximations with polynomials of 32nd degree  

in an L1, L2 and L∞ metric 

 
These oscillations are undesirable. Their ampli-

tude reflects the approximation error  . The pur-
pose in filter synthesis is to obtain the rectangular 
contour of the ideal function that is maximally flat 
characteristics in the passband and stopband, and 

the narrowest possible transition band. With 1L  and 
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2L  metrics the oscillations increase near the transi-

tion band of the function. This is due to the Gibbs 
effect [1]. 

Numerous methods exist for reducing this effect. 
It can be generalized that every action towards 
decreasing the amplitude inevitably leads either to 
broadening the transition band or to increasing the 
degree of the polynomial which decreases the ac-
curacy of the approximation and increases its com-
putational complexity. 

The approximations in an L metric are perfor-

med with the well-known method of Parks-
McClellan [2], which is a modified version of the 
second algorithm of Remez [3]. It is a minimax, 
equiripple approximation relative to the Chebyshev 
distance. It is performed with a trigonometric poly-
nomial of degree m: 
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where 
n

b  are the polynomial coefficients, x   . 

With this method the transition band can be pre-
cisely defined and arbitrary narrow. The latter, how-
ever, leads to an increase of the approximation 
error, resp. the amplitude of the oscillations. An 
important advantage of the method is that the syn-
thesis is performed by an iterative algorithm of 
Remez that has a fast convergence and a low com-
putational complexity. It is established that with 
equal specification (non-uniformity in PB and SB 
and equal transition bandwidth) with the Parks-
McClellan method the approximation is performed 
by a polynomial of the lowest degree. This deter-
mines the broad applicability of the method in many 
technical tasks. 

 
2. ESSENCE OF THE METHOD  
    OF COMPRESSED COSINES 

 
In [4] a new approximation method called, “com-

pressed cosines”, using chebyshev’s norm is pro-
posed. With the method a low degree trigonometri-
cal polynomials with small approximation error are 
determined. The analytical expression of the poly-
nomial is 
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It is seen that the argument of cosine consist 
modulating function  
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The functoin  erf .  is the Gauss integral error 

function. It has S - shaped graph. The  slope of the 
graph depends on the parameter  , and compres-

ses the oscillations of cosine – fig. 2. 
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Fig. 2. Modulating function erf(.) and compression of cosine 

 
Fig. 3 shows an optimal approximation by a pol-

ynomial of the lowest possible degree (fourth). 
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Fig. 3. Optimal approximation of fourth degree 

 
It is seen from the figure that the approximation 

has only two extreme points, while with the other 
methods the extreme points are much more (Fig. 
1), which is due to the low degree of the polynomial. 
In this regard this approximation is closest to the 
ideal function. The polynomial coefficients are ob-
tained by the Remez algorithm that is an iterative 
solution to a system of m+2=6 linear equations. 
With the other two approximations the equations 
are much more. For filters with specifications close 
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to the ideal function, the reduction of the computa-
tion operations is more than 100 times. 

On the other hand, in the proposed method the 
magnitude of the “jump” of the function decreases 
with the increase of the parameter  , without chan-

ge of the transition bandwidth or increasing the 
polynomial degree. Fig. 4 shows this valuable prop-
erty of the method for a fixed transition band and 
two different values of the parameter  . 
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Fig. 4. Approximation error ε depending on the parameter β 

for a fixed transition band 

 
The parameter   can be arbitrarily large and 

the transition band – arbitrarily narrow. With the 
proposed method approximations to ideal functions 
with a very high accuracy and a very low computa-
tional complexity can be done. With a transition 
bandwidth equal to zero and     the fourth deg-

ree polynomial coincides with the ideal transfer 
function. Instructively speaking, the proposed poly-
nomial of fourth degree is the shortest way to the 
ideal function. 

 
3. APPLICATION OF THE METHOD  
    TO COMPUTING 2D FILTERS 

 
The magnitude response of one-dimensional 

digital filters is a function of one variable which des-
ignates the frequency. The general form of the 
transfer function is 

    0 cosn
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where 
nh  are the filter coefficients. The plot of the 

magnitude response (MR) is a plane figure (fig. 4). 
The abscissa is the argument and the ordinate is 
the amplitude value. 

In the two-dimensional filters the transfer func-
tion is of two variables 
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The MR is a spatial figure whose base is the 
plane defined by the values of the two arguments. 
The values of the arguments are on the abscissa x 
and the ordinate y, and the amplitude is on the 
applicate z. The ideal transfer function of a lowpass 
two-dimensional filter is a rectangular contour 
whose rotational body is a cylinder. 

Approximation in a two-dimensional space is a 
complicated and time-consuming operation [5]. This 
is why the fastest way is to perform a one-
dimensional approximation and to obtain the spatial 
figure by a program as a rotational body with re-
spect to the ordinate. 

Fig. 5 shows an MR of a one-dimensional low-
pass filter with a specification: degree of the appro-
ximating polynomial 4m  , attenuation in the stop-

band 10DS   dB; normed transition frequency 

0.5cf  ; normed transition bandwidth 0.1f   
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Fig. 5. MR of a one-dimensional LP filter 

 
An MR of the derived two-dimensional filter is 

obtained by the rotation of the one-dimensional MR 
with respect to the ordinate Fig. 6. 

 
Fig. 6. Two-dimensional lowpass filter 
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In the example shown the filter specification is 
deliberately chosen to have a low selectivity in or-
der to obtain a better visualization of the plots. Ob-
viously, if the transition bandwidth is decreased and 
the value of the parameter   is increased, the filter 

with compressed cosines will have a characteristic 
closer to the ideal one – a cylinder. 

In a similar way a two-dimensional highpass fil-
ter is obtained. Fig. 7 shows a highpass two-dimen-
sional filter, mirroring the prototype from Fig. 6. 

 
Fig. 7. Two-dimensional highpass filter 

 
Fig. 8 show characteristics of a two-dimensional 

bandpass filter.  

 
Fig. 8. Two-dimensional bandpass filter 

 

4. CONCLUSION 
 

With the method of compressed cosines two-
dimensional filters with characteristics close to the 
ideal ones are obtained. It has to be noted that 
achieving optimal characteristic close to the ideal 
one requires a high resolution in the transition band 
of the filter. Otherwise, a Gibbs phenomenon is 
observed. The calculation of the spatial figure can 
be considerably alleviated, since in a large part of 
the passband and the stopband it has constant 
values 1   and  , respectively (Fig. 4). 

The proposed filters can find application to im-
age processing with a high precision in such areas 
as astronomy, medicine, criminology, etc. 
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