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Abstract 
The paper deals with the number of harmonics that can be completely rejected simultaneously in harmonic rejection mixers using 
only gain calibration. The restrictions on the combinations of rejected harmonics are examined too. The results are also applicable to 
harmonic rejection in digital domain. 
 
 
1. INTRODUCTION 

Harmonic rejection mixers (HRM) have been in-
creasingly used in wideband receivers as they alle-
viate the harmonic mixing problem and thus con-
siderably relax the preselect filtering requirements. 
An HRM is а complex mixer, consisting of several 
parallel operating conventional hard switching mix-
ers, driven by a multiphase local oscillator (LO). 
The HRM output signal is a weighted sum of the 
signals down converted by the individual mixers [1]. 
The HRM can be seen as a single perfect multiplier, 
driven by an effective LO waveform, in which some 
harmonics are eliminated.  
There are numerous implementation options for 
HRMs, but the basic principle can be illustrated by 
Fig. 1. It can be easily realized that the effective LO 
waveform is by its nature a sampled sinusoid. 
Therefore it contains only harmonics of orders 

�kN , where k=1, 2, … So, the nearest interferer, 
which should be suppressed by the preselect filters 
is at � � LOfN �    (assuming a zero-IF receiver).  

Fig. 1. HRM operation principle 

Unfortunately harmonic rejection ratios (HRR) of 
HRMs are typically limited to 30-40 dB due to gain 
and phase mismatches [2]. HRR can be enhanced 
by gain and phase calibration [3]. Simultaneous 
calibration of both phases and gains however, in-
creases complexity of HRM. Hence, many HRMs 
employ only gain calibration [4, 5, 6].  
Another efficient way for HRR improvement is to 
perform the suppression of harmonic interferers 
partly [1, 2, 7, 8] or entirely [9] in digital domain. In 
[1, 2, 7, 8] adaptive cancellation is used. In [9] the 
harmonic rejection (HR) problem is formulated and 
treated as a problem from the area of multiuser 
detection and an MMSE equalizer is derived for the 
suppression of the harmonic interferers. These two 
approaches to digital HR appear to be completely 
different, but in both cases, although different tools 
are used, the proper weighting factors are found 
and applied to form a weighted sum of the individu-
al mixer outputs. From this perspective, the pro-
posed HRMs with digital interference suppression 
can be seen as HRMs with gain calibration only.  
In this paper we determine the number of harmon-
ics that can be completely rejected simultaneously 
in presence of phase mismatches using gain cali-
bration only. In addition, the restrictions on the 
combination of these harmonics are investigated. 
The results are also applicable to HRMs employing 
digital domain HR techniques.  
The rest of the paper is organized as follows:   
In Section 2 the system model is presented and the 
conditions for HR as a system of linear equations 
are expressed. In Section 3 this equation system is 
examined from the viewpoint of finding the allowa-
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ble combinations of harmonics, that can be comple-
tely rejected simultaneously. In section 4 examples 
for some typical scenarios are presented and dis-
cussed.  
 
2. THE HRM MODEL 
 
Тhe effective LO waveform can be expressed as: 
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where  
n

iLOi tnTttptLO  and 

tp  denotes the single effective pulse, which mul-
tiplies the RF signal in each HRM path. The convo-
lution with tp  is equivalent to a mild filtering of 
the effective LO waveform and usually does not 
play a significant role in the rejection of the LO 
harmonics.  Therefore, it will be ignored in the rest 
of the paper, excluding an important special case. 
Also, without loss of generality �LOT  will be as-
sumed. Furthermore, the path count N will be as-
sumed to be even, as odd values result in imple-
mentation disadvantages.  
The Fourier series coefficients of the effective LO 
waveform, ignoring the scale factors, are given by:  
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where ii Ni�  and i  is the phase 
error of the i -th LO pulse train.  
The path gains, needed to reject the DC component 
and the harmonics of the orders from � to  �N  
are the solution of the following system of �N  
linear equations:  

bwA                         (3) 
where 
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 is the phase angle of the LO fundamental com-
ponent.  

We seek real solutions only. Complex solutions are 
inapplicable, because the two quadrature compo-
nents of the LO harmonics are not available sepa-
rately in the HRM hardware. So, the multiplication 
with complex weighting factors cannot be imple-
mented.  
A widely used HRM implementation option is to use 
double LO pulses of the form 

�LOD Ttptpp  ensuring even HR. 
Then the number of HRM paths is reduced by half 
and will be denoted by M. Such HRMs will be des-
ignated here as M-path HRMs in contrast to N-path 
HRMs described before. The LO phase shifts in M-
path HRMs are M� . The HR equation system 
consists of �M  equations for odd HR only.  
Both  N-path and M-path HRMs can be simplified if 
one of the path gains is constrained to be zero (i. e. 
this path does not exist in the hardware). Then the 
number of unknown path gains reduces by one.  

3. HR EQUATION SYSTEM EXAMINATION 

3.1. HRM without phase errors 

Within the restriction to real solutions it is conven-
ient to split the equations into real and imaginary 
parts using the Euler's formula. We obtain a new 
system  

dwC                          (4) 
where  
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and � �Tαα ������������������d , are a 
NN ��  real-valued matrix and a 
���N  real-valued vector, respectively. Fur-

thermore, it is suitable to scale the first and the N-th 
equations by N� and the remaining ones by 

N� .  
The equations from �N -st to the the ��N -rd 
are superfluous, as the �N -st equation has all 
zero coefficients, and each of the rest equations 
duplicates one of the equations from the fourth to 
the �N -st.  
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Let us create a new reduced equation system  

hGw                          (5) 

where G  is a matrix formed from the first N rows of 
C  and T�����������������h  is an  N-ele-
ment vector.  
It can be easily proven that in the absence of phase 
errors G  is an orthogonal matrix. As a result the 
system (5) has a unique solution.  

 
3.2. Examination of the perturbed system 

 
An orthogonal matrix is the best conditioned matrix. 
This implies that in the presence of sufficiently small 
phase errors T

N �������� �����φ  the perturbed 
system hwφG  will not only have a unique 
solution φw  but its scatter will be small. There-
fore, in the presence of phase errors, the path gains 
in an HRM can be adjusted for perfect suppression 
of the DC component and the harmonics up to and 
including ��N -st. In addition, the path gains 
will be nearly equal to their nominal values.  
It is useful to prove that additional harmonics can-
not be completely rejected.  If one of the two equa-
tions, related to a harmonic of order addk , 

�� NkN add , is satisfied by φw , then 
�φwφr , where φr  is the corresponding 

row of C , e. g. the one with cosine coefficients.  It 
is difficult to find an expression for φwφrφf
. So we find its derivative  
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Using implicit differentiation we find 
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After performing substitutions and simplifications, 
we obtain:  

iadd
i
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φwφr ,  (8)  

hence �
i

φwφr  in the general case. 

Therefore in the general case φwφr  cannot be 

constant and, in particular, cannot be zero. In a si-
milar way this can be proven for additional equa-
tions with sine coefficients. Hence, additional har-
monics cannot be completely rejected.  
However, the perfect suppression of the k-th har-
monic can be traded off for perfect suppression of 
its "symmetrical", kN -th harmonic, where 

�Nk . This is possible, because the corre-
sponding matrix rows for the two symmetrical har-
monics are identical in the unperturbed case. The 
scatter of the solution will be somewhat larger, as 
the phase errors will be multiplied by kN  in-
stead of k.  
The simultaneous complete suppression of two 
symmetrical harmonics is, however, problematic. 
Assume, that in the system present e. g. the cosine 
equations for the k-th and kN -th harmonics. 
By subtracting the first one from the second one we 
obtain a new equation. The solution of the system 
will not change if one of the two original equations 
is replaced by the new one. The coefficients of the 
latter will be approximately NikNi ����� , so 
they will be completely random, unlike the coeffi-
cients of the remaining equations, where the ran-
dom phase errors are added to much larger fixed 
angles. As a result some combinations of phase 
errors will cause very large path gains and even 
inconsistency of the system. It can be proven that 
the power of white noise, transferred to the HRM 
output from the output of the preceding RF amplifier 
is proportional to the sum of the squares of the path 
gains. Hence, in this case the HRM output noise 
can exceed many times that in the case of a solu-
tion, nearly equal to the nominal path gains. Since 
the fundamental magnitude is constant, a catastro-
phic SNR degradation can occur.  
Similar problems arise when the HRM is calibrated 
for a complete rejection of the "middle", N/2-nd 
harmonic, because the corresponding sine equation 
has coefficients, roughly proportional to the respec-
tive phase errors. So the receiver will be suscepti-
ble to strong interferers at �LOfN .  
 
3.3. Implementation implications 

 
In the case of an N -path HRM the consistent sys-
tem of HR equations has N  or  �N  equations 
in the form (4), depending on whether there is a 
zero-gain path. The first three equations ensure the 
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DC suppression and define the fundamental magni-
tude and angle. The remaining equations ensure 
the harmonic rejection. Given that two equations 
per a rejected harmonic are required and only even 
values of N are preferred for implementation rea-
sons, it is advisable for the N-path HRMs to be 
implemented with a zero-gain path. Otherwise one 
path will be superfluous.  
A limitation of the HRM with one zero-gain is that 
they have a "native" phase angle of the fundamen-
tal tone due to the fixed position of the effective LO 
zero crossing. In this case the modification of the 
fundamental angle by path weight adjustment re-
sults in an increased level of the 2N -th harmonic.  

For M-path HRMs the consistent HR equation sys-
tem consists of M or 1M  equations depending 
on whether there is a zero-gain path. Based on 
considerations, similar to those for the N -pat 
HRMs, it is advisable to choose even values of M, 

or to implement HRMs with one zero-gain path, if 
M  is odd.  
The M-th harmonic causes the same problems in 
the M-path HRM, like the N/2-nd harmonic in their 
N-path counterparts. However this can be avoided 
here, if an even value of M is chosen. In this case 
the problematic harmonic would be already sup-
pressed owing to the use of bipolar LO pulses, as 
far as good symmetry is achieved.  
 
4. EXAMPLES AND DISCUSSION 

To illustrate the theory we shall examine some ex-
amples. We assume that phase errors are uncorre-
lated normally distributed with 1 , and the 
path gains are initially equal to the nominal values 
corresponding to zero phase errors. In each of the 
examples, the calibrated path gains for 20 consecu-
tive realizations of phase errors will be presented.  
 

 
Fig. 2. Path gains after calibration for 20 realizations of a 12-path HRM and the effective LO harmonic levels for one typical its  

realization after and before calibration. Completely rejected harmonics of the orders 2, 3, 4 and 5 (a) and 3, 4, 7 and 10 (b).  
Simultaneous rejection of one pair of symmetrical harmonics (c). Complete rejection of the harmonic of the order N/2 (d).  

Fundamental tone shifted by 15° from its native value (e). 

 
An N-path HRM with N=12 with one zero-gain path 
will be examined. The consistent system consists of 
11 equations – the first one is for the DC rejection, 

the next two equations define the fundamental 
magnitude and angle, and the remaining 8 equa-
tions ensure complete suppression of 4 harmonics. 
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We choose the harmonics of the orders 2, 3, 4 and 
5 to be completely rejected. The solution has mini-
mal scatter (Fig. 2a). Each of the above harmonics 
can be exchanged for its symmetrical one without 
compromising the HRM performance. For example, 
we can completely suppress the harmonics of the 
orders 10, 3, 4 and 7 (Fig. 2b). However, the cali-
bration for simultaneous rejection for example of the 
5-th and 7-th harmonics results in very large gain 
scatter (Fig. 2c). If the N�2-nd, the 6-th harmonic in 
our case, is entirely rejected the solution has very 
large scatter again (Fig. 2d). 
As can be expected, the calibration for a complete 
rejection of a set of harmonics worsens (but not 
necessarily) the HRRs for the remaining harmonics 
(Fig. 2 a-e). This can be especially strongly pro-
nounced if a pair of symmetrical harmonics and/or 
the middle, N�2-nd harmonic is completely rejected 
(Fig. 2 c, d). An HRR degradation for the N�2-nd 
harmonic occurs in the case when a HRM with a 
zero-gain path is forced to operate with fundamen-
tal angle, different from its "native" one (Fig. 2 e)  
For the M-path HRMs similar observations can be 
made as for their N-path counterparts.  

 
5. CONCLUSIONS 

The investigations of limitations of the gain calibra-
tion in HRMs showed that perfect suppression can 
be achieved only for 22N  and 12M  
harmonics in N-path and M-path HRMs, respec-
tively. Calibration for perfect suppression of a given 
set of harmonics worsens the rejection of the re-
maining harmonics. Attempts for complete suppres-
sion of the middle harmonic or a pair of symmetrical 
harmonics can result in extremely large path gains 
and SNR degradation. In addition, convergence 
issues in the algorithms for calibration or digital 
domain HR can be expected.  
As the RF spectrum gets more and more crowded, 
the probability for interference scenarios with a 
simultaneous presence of strong blockers at pairs 
of symmetrical LO harmonics will increase. This 
implies that the stopband of the preselect filters 
should begin at 2��N�  if only gain calibration is 
employed. Additional phase calibration or increase 
of path count of the HRM would be needed if  more 
relaxed filter requirements are desired.  

It is advisable that N-path HRMs are implemented 
with even N and one zero-gain path, whereas M-
path HRMs are implemented with even M.  
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