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Abstract 
In this paper we consider the problem of radiation from a vertical short (Hertzian) dipole above flat lossy ground, which represents 
the well–known in the literature ‘Sommerfeld radiation problem’. The problem is formulated in a novel spectral domain approach, and 
by inverse three-dimensional Fourier transformation the expressions for the received electric and magnetic (EM) field in the physical 
space are derived as one–dimensional integrals over the radial component of wavevector, in cylindrical coordinates. This formulation 
appears to have inherent advantages over the classical formulation by Sommerfeld, performed in the spatial domain, since it avoids 
the use of the so – called Hertzian vector and its subsequent differentiation for the calculation of the received EM field. It also gives 
new insights regarding the propagation mechanism. Subsequent use of the Stationary Phase Method (SPM) in the high frequency 
regime yields closed–form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM 
field originating from the image point. In this way, we conclude that the so–called in the literature ‘space wave’ (line of sight plus 
reflected EM field) represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface 
wave can be ignored. Furthermore, numerical results in the high frequency regime are presented in this paper, in comparison with 
corresponding numerical results based on Norton’s solution of the problem (space and surface waves). Finally, numerical results 
based on the numerical integration of the spectral integral are also presented for comparison purposes. These results essentially 
provide a means of estimating the frequency limits of applicability of the SPM method for the problem in question. Subsequent sug-
gestions on the preferred method (SPM vs Numerical) for calculating received signal level for various frequency ranges are made. 
 
 
1. INTRODUCTION 

The so-called ‘Sommerfeld radiation problem’ is a 
well – known problem in the area of propagation of 
electromagnetic (EM) waves above flat lossy 
ground for obvious applications in the area of wire-
less telecommunications [1-5]. The classical Som-
merfeld solution to this problem is provided in the 
physical space by using the so- called ‘Hertz poten-
tials’ and it does not end – up with closed form ana-
lytical solutions. K. A. Norton [6] concentrated in 
subsequent years more in the engineering applica-
tion of the above problem with obvious application 
to wireless telecommunications, and provided ap-
proximate solutions to the above problem, which 
are represented by rather long algebraic expres-
sions for engineering use, in which the so – called  
‘attenuation coefficient’ for the propagating surface 
wave plays an important role. 

In this paper the authors take advantage of previ-
ous research work of them for the EM radiation 
problem in free space [7] by using the spectral do-
main approach. Furthermore, in Ref. [8] the authors 
provided the  fundamental formulation for the prob-
lem considered here, that is the solution in spectral 
domain for the radiation from a dipole moment at a 
specific angular frequency (ω) in isotropic media 
with a flat infinite interface. At that paper, the au-
thors end – up with integral representations for the 
received electric and magnetic fields above or be-
low the interface [Line of Sight (LOS) plus reflected 
field – transmitted fields, respectively], where the 
integration takes place over the radial spectral co-
ordinate kρ. Then, in the present paper the authors 
concentrate to the solution of the classical ‘Som-
merfeld radiation problem’ described above, where 
the radiation of a vertical dipole moment at angular 
frequency ω takes place above flat lossy ground 
[this is equivalent to the radiation of a vertical small 
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(Hertzian) dipole above flat lossy ground]. The pro-
posed spectral – domain approach and particularly 
the derived integral representations for the EM field 
is not just a more effective means of reaching the 
same results compared to the classical spatial do-
main Sommerfeld’s method. It also helps deducing 
new inferences regarding the propagation mecha-
nism, as explained in Section 3. 
Next, by using the Stationary Phase Method, (SPM 
method, [9]-[11]) integration over the radial spectral 
coordinate kρ is performed and the high frequency 
solution to the problem [‘space wave’, which repre-
sents the interference of the Line – of – Sight (LOS) 
and the wave scattered from the ground] is derived 
in a novel, to our knowledge, closed – form analytic 
solution, as exhibited in Section 4, below.  In addi-
tion, numerical results which show both the ‘space 
wave’ mentioned above, as well as the Norton’s 
‘surface wave’ [6] are presented in Section 5. Fi-
nally, numerical results based on the numerical 
integration of the spectral integral are also presen-
ted for comparison purposes, as well as for obtain-
ing an indication of the frequency limits of the SPM 
method, which is an inherently ‘high frequency ap-
proximation’ technique ([9]).  
 
2. PROBLEM GEOMETRY 

The geometry of the problem is given in Fig. 1. 
Here a Hertzian (small) dipole with dipole moment p 
directed to positive x – axis, at altitude x0 above the 
infinite, flat and lossy ground, radiates time – har-
monic electromagnetic (EM) waves at angular fre-
quency  ω=2πf [exp(-iωt) time dependence is as-
sumed in this paper]. Here the relative complex 
permittivity of the ground is εr΄=ε΄/ε0= =εr+ix, where  
x=σ/ωε0=18×109 σ/f , σ  being the ground conduc-
tivity, f the frequency of radiation and  ε0=8.854 
×10-12 F/m  is the absolute permittivity in vacuum 
or air. Then the wavenumbers of propagation of EM 
waves in air and lossy ground, respectively, are 
given by the following equations: 
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The Maxwell equations for the time – harmonic EM 
fields considered above are given by:  
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where  is current density (source of EM fields con-
sidered here). 
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Fig. 1. Geometry of the problem 
 
3. INTEGRAL FORMS FOR THE RECEIVED 
ELECTRIC AND MAGNETIC FIELDS IN THE 
SPECTRAL DOMAIN 
 
Following [7]-[8], the EM field in physical space is 
derived from current density in spectral domain and 
Green’s function, also in the spectral domain, 
through inverse three – dimensional (3D) Fourier 
transformation as following :  
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where the symbol < > denotes the inner product 
and F-1 is the inverse 3D Fourier Transform (FT) 
operator and  
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is the 3D Green’s function in spectral domain and 
cylindrical coordinates. 
Application of the problem specifics      (i.e. current 
density vector in spectral domain has only x – com-
ponent, the wavevector k=(kρ,kα=0,kx) does not pos-
sess azimuthal α component, see Fig. 1) and the 
corresponding boundary value problem ([8], [12]) 
yields the following integral representations for the 
space wave (LOS field plus reflected field) above 
the ground level (x > 0) 
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and H0(1) is the Hankel function of first kind and zero 
order. 
The line-of-sight (LOS) EM field of the Hertzian di-
pole in the far field is given in spherical coordinates 
by [9,13]: 
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Conversion to cylindrical coordinates is made by 
means of the following expressions (see Fig 1 abo-
ve): 
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The physical interpretation of eqns. (7) and (8) is 
that the scattered EM field at the observation point 
consists of a complex summation of the EM waves 
scattered from the different points of the flat and 
lossy ground, each one with its own local reflection 
coefficient (here the term ‘complex summation’ 
means that both the amplitude and phase of these 
individual scattered waves must be taken into ac-
count). 
Similar expressions are derived for the transmitted 
fields below the ground interface (x < 0): 
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4. ANALYTICAL CLOSED – FORM  
EXPRESSIONS FOR THE SCATTERED EM 
FIELDS OBTAINED THROUGH  
THE APPLICATION OF THE STATIONARY 
PHASE METHOD (SPM) 

Following [8], [12], [14], [16] and [17] and by using 
the Stationary Phase Method (SPM) [9]), we finally 
end – up with the following closed - form expressi-
ons for the space wave (in the higher – half space, 
x>0), as given below:  
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and 
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is the (unique) stationary point [9, 12, 16, 17]. More-
over the following expressions hold:                                               
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Note that in the above expressions the angle φ is 
the well – known in the literature ‘grazing angle’ 
[13], as shown in Fig. 2 below. 
Then our final closed-form analytical solution for the 
reflected fields can also be written in the compact 
form of the following expressions: 
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where (A’A) is the distance between the image 
point and the observation point (Fig. 2). 
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Fig. 2. Geometry of the radiation where  the image A’  

of the radiating Hertzian dipole is also shown. 
 
5. NUMERICAL RESULTS – COMPARISON  
OF SPM WITH (i) NORTON’S APPROXIMATE  
SOLUTION (ii) NUMERICAL INTEGRATION 
TECHNIQUES 

In this Section two types of indicative numerical 
results are provided for comparison purposes. First-
ly, the magnitudes for the following fields: 

– Scattered Electric field, eq. (25) above, 

– Line – of – Sight  (LOS) field, 
– ‘Space Wave’, i.e. the complex summation 

of the previously mentioned fields, 
are presented for various distance points (ρ) be-
tween the transmitting dipole and the receiving 
point and compared with Norton’s results [6, 13]. 
Two demonstration frequency sets were selected 
for the radiating dipole, namely f=80 MHz (Fig. 3) 
and f=30 MHz (Fig. 4).  

Fig. 3: Electric fields at observation point as a function of 

horizontal distance (ρ) for frequency f=80 MHz. Here the 
various components of received electric field are shown as 

following: Line – of – Sight (LOS) field (circle), field scattered 
from ground (asterisk), ‘space wave’ (square) and ‘surface 

wave’ (diamond). 

 
 
 
 

 

 

 

 

Fig. 4. Same as Figure 3, except that here frequency  
f = 30 MHz. 

The rest of the problem parameters are the follow-
ing: height of transmitting dipole x0=60m, height of 
observation point (receiver position) x=15m, current 
of the radiating Hertzian dipole I=1A, length of the 
Hertzian dipole 2h=0.1m (much smaller than the 
wavelength λ=c/f  in both cases), relative dielectric 
constant of ground εr=20 and ground conductivity 
σ=0.01 S/m. Finally, note that the relation between 
current I and dipole moment p is given by: I(2h) = 
iωp, where ω=2πf and i is the unit imaginary number. 

(25) 

(26) 

80 MHz 

30 MHz 
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Comparison of numerical results derived from our 
formulation, and the Norton’s results [6,13] shows 
very good agreement, as it can be seen in Figs. 3 
and 4. The surface wave represented in Figs. 3 and 
4 is the so-called ‘Norton surface wave’ [6, 13]. 
Note that at the higher frequency of 80 MHz (Fig. 3) 
the surface wave, according to Norton’s formulation 
[6, 13] is rather negligible, as compared to the 
‘space wave’, while it becomes rather more impor-
tant at the lower frequency of 30 MHz (Fig. 4). Our 
proposed SPM method of Sections 4 and 5 (which 
is inherently a ‘high frequency method’) ignores this 
surface wave contribution in the high frequency 
regime. 
The second type of numerical data, shown in this 
paper, compare the results obtained using the ana-
lytical, closed – form formulas of the SPM method, 
described in section 4 above, i.e. eqns. (17) through 
(26), with those taken by numerically evaluating the 
corresponding integral expressions of eqns. (7) 
through (14), given in section 3. Figure 5, below, 
provides indicative results for the scattered electric 
field of, eq. (8) (here the LOS field is not shown).  
In order to numerically estimate the integral of 
eq.(8), the adaptive Simpson’s algorithm was used 
([18]). The error tolerance was set to 10-6. Moreover 
to mitigate the ‘small scale’ oscillating behaviour of 
the resulting graphs, which is an outcome of the 
fact that the integrated expression consists of com-
plex numbers of fast – varying phases, a typical 
three (3) sample smoothing (averaging) was ap-
plied, where appropriate.  
Careful examination of eq. (8) reveals the fact that 
there exists a singular point at κ1=0, that is at kρ=k01 
(see eq.(9) above) and hence it must be excluded 
by a sufficient range around k01. Our preliminary 
tests, showed that this range needs to be no less 
than10-4 times the limiting value of k01 (according to 
eq. (22), kρs < k01). However, this indicates that a 
segment around the stationary point will be exclud-
ed from the calculation (see respective labels in the 
diagrams of Fig. 5, below). The inferences for this 
are described below. 
Examining the curves of Fig. 5 below, it is evident 
that for frequencies of about 100 KHz and above 
the results taken under the numerical integration 
approach underestimate the received signal level 
compared with the SPM method. The reason for 
this behaviour is related with the properties of the 

SPM method, which indicate that for large argu-
ments (in our case frequencies) the integral expres-
sion can be asymptotically approximated by taking 
into consideration just the contributions of the areas 
around the stationary points and their neighbour-
hoods [9]. However, as mentioned above, when 
numerically evaluating the integral expression of eq. 
(8) a sufficiently large range around k01 had to be 
excluded for the algorithm to converge. In most 
cases this range overlaps with the stationary point, 
essentially meaning that a significant contributing 
part is missed. 
On the contrary, according to the last curve of Fig. 5 
(f = 10 KHz), it is now the SPM method that seems 
to underestimate the EM field values (we also reach 
the same findings for f < 30 KHz). Indeed, for such 
low frequencies, the large argument approximation 
of the SPM method cannot be invoked, in other 
words, eqns. (19) through (26) do not hold. It is still 
necessary to exclude a range around kρ=k01, for the 
numerical integration algorithm to converge, how-
ever this time this range is not a major contributor to 
the overall outcome. 
In conclusion, our research group suggests the 
following ‘safe’ recommendations (see Fig. 5): 

– For frequencies in the MF (300 KHz – 3 
MHz, [13])  frequency range and higher, the 
SPM method significantly provides more 
accurate results for the received signal lev-
el and hence should be the selection of 
choice for prediction purposes. 

– For the VLF frequency range (<30 KHz, 
[13]) the SPM fails and the estimation ought 
to be based on numerical integration tech-
niques. 

– Finally, in the LF range (30 – 300 KHz [13]), 
the results, given by the two methods, 
seem comparable and our research group 
proposes that a closer examination and po-
tential fine – tunning of the numerical inte-
gration algorithm is necessary, before 
reaching ‘safe’ inferences (see Section 6 
below)   

Further clarifications about the above presented 
numerical results and the related inferences that 
can be made based on them will be provided during 
the Conference. 
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Fig. 5. Value of the scattered electric field as a function of horizontal distance ρ between transmitter and receiver,  
calculated by (i) the SPM method and (ii) numerical integration techniques. 

 
6. CONCLUSIONS – FUTURE RESEARCH  

In this paper we formulated the radiation problem 
from a vertical short (Hertzian) dipole above flat and 
lossy ground in the spectral domain, which resulted 
in an easy to manipulate integral expression for the 
received EM field above or below the ground. As 
also explained above, this formulation appears to 
have inherent advantages over the classical formu-
lation by Sommerfeld [5], since it avoids the use of 
the so – called Hertz potential and its subsequent 
differentiation for the calculation of the received EM 
field. Subsequently, by applying the Stationary 
Phase Methοd (SPM) in the high frequency regime, 
the classical solution for the ‘space wave’ was re-
derived in a new fashion, thus showing that this is 
the dominant solution in this high frequency regime. 
Moreover, we explained why the SPM method even 
appears to provide more accurate results than 
many common numerical integration techniques for 

most frequencies of interest in the area of wireless 
telecommunications and hence can be the basis for 
an efficient simulation tool for radio signal propaga-
tion. 
Corresponding research in the near future by our 
research group will concentrate to the calculation of 
the received EM field below the ground at the high 
frequency regime (by using again the SPM me-
thod). Furthermore, we intend to calculate the re-
ceived EM field, above or below the ground, for any 
frequency of the radiating dipole, in an exact and 
analytical manner [19]. In this context, the behavior 
of surface waves will become evident through the 
use of the residue theorem, when applied to eqns. 
(7) and (8) above, in a way similar to Ref. [5].  
Moreover, we also intend to investigate the formula-
tion of the same radiation problem in spectral do-
main, but now in the case of a horizontal radiating 
Hertzian dipole above flat and lossy ground. In ad-
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dition, further investigations will be performed in the 
case of rough (and not flat) ground and in the case 
of curvature of the earth’s surface for large distance 
communication applications. Finally, in the near 
future our research group will focus on the design of 
a software product for accurate prediction of pass 
loss in different types of environment, like urban, 
suburban and rural environments. The above soft-
ware tool will be based on the exact electromag-
netic (EM) method proposed in this paper, and 
therefore it is expected that it will exhibit important 
advantages over previously developed correspond-
ing software tools. Some of these advantages might 
include accuracy, speed, efficiency and low com-
plexity, since the various calculations will be based 
on closed form analytical expressions, instead of 
resource starving and time consuming numerical 
methods. We also intend to fine tune the numerical 
method presented in this paper (e.g. numerical 
experiment with convergence tolerances), as well 
as to test alternative algorithms and techniques 
(e.g. the ‘adaptive Lobatto’ algorithm will be exam-
ined) and to use the most appropriate as the back - 
up method in situations where the SPM is not suffi-
cient (e.g. at low frequency regime).  In this frame-
work, comparisons with existing commercial soft-
ware tools will also be performed [21]. 
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