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Abstract 
In this work we apply methods of 3-dimensional linear interpolation, one-dimensional quadratic Lagrange interpolation and cubic 
spline to interpolate electromagnetic induction values in 3D. For a given 3-dimensional lattice (base points) values are obtained by 
calculation in accordance with a mathematical model. Then for a new set of points we obtain electromagnetic induction values both 
interpolation and calculation. Numerical results show that interpolation algorithms reduce run time considerably without loss of accu-
racy.  
 
 
1. INTRODUCTION 

At the moment there are many types of magneto-
therapy devices that are successfully used in medi-
cine. In most cases, in practice the required space 
configuration of the magnetic field is created by 
means of one or more air coils (without core) which 
are appropriately arranged in the space. Because of 
that there is a linear relationship between the mag-
netic flux density of the excited magnetic field and 
current in the coils. It is assumed that the environ-
ment in which the space-time configuration of the 
magnetic field is seen is linear. The result is the 
superposition of the fields of the individual coils that 
forms a more complex time-spaced magnetic field. 
We suppose that the environment around the coils 
is homogeneous and the relative magnetic permea-
bility is constant. 
In this work we apply numerical algorithms to inter-
polate low frequency magnetic field obtained in a 
magnetotherapy device that was designed and con-
structed in Sofia Technical University and used in 
clinical practice. 
The solution of the problem of the modelling and 
visualization in 3D of electromagnetic field generat-
ed by this apparatus is given in articles [1,3,4]. The 
obtained data allows a physician to study the graph-
ical representation of the magnetic induction field. 
By changing the position of coils, distance between 
them and the current intensity the physician can 
select an appropriate regime to achieve the best 
results for minimal treatment time. 

For this model the algorithm of calculation of elec-
tromagnetic induction in nodes of a base 3-dimen-
sional lattice was designed and implemented. The 
obtained results are saved in an array having size 
[nx3], where n – the number of nodes. Any element 
of the array contains coordinate values of electro-
magnetic induction vector. When visualizing results, 
the value of the module defines the color selection 
– the more value the more saturation of the color.  
In this model the superposition principle is used and 
the magnetic induction in a point is the sum of the 
induction values generated by all the coils, and in 
every coil – by all its contours. Hence this algorithm 
is time-consuming. In this connection in [5] a meth-
od of 3-dimensional linear interpolation was imple-
mented. Base values were obtained by calculations 
described and implemented in [1,3,4]. Such an app-
roach resulted in performance increasing without 
loss of accuracy.  
Here we use values obtained by calculations as 
base ones. These values are in nodes of 3-dimen-
sional lattice and form interpolation nodes. Then we 
present the results of application of 3 interpolation 
methods using the nodes: a) 3-dimensional linear 
interpolation, b) one-dimensional quadratic Lagran-
ge interpolation and c) coordinate-wise cubic spline. 
Numerical experiments show that any of methods 
reduces the run-time and does not lead to a loss of 
accuracy. 
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2. MATHEMATICAL MODELS  

2.1. 3-dimensional linear interpolation (3D I) 

Select a cube of the base lattice. All its vertices 
contain values of electromagnetic induction ob-
tained by calculation. We select the center of the 
cube as interpolation point. This scheme is shown 
on Fig. 1. The interpolation nodes are 8 nearest no-
des of the base lattice: { ),,( kji zyx }, i,j,k={0,1}. 

 
Fig. 1. Base nodes and the interpolation point  

for 3-dimensional linear interpolation 
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The interpolation polynomial has the form 
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where fnmp – the vector of values obtained by the 
calculation in the point (xn,ym,zp). 
Hence we use linear interpolation that takes into 
account contribution of all the 8 interpolation nodes. 
It should be noted that in (2) we use such a form for 
brevity, because this formula is applied for every 
coordinate of fnmp by turns. 

 

2.2. One-dimensional quadratic Lagrange  
interpolation (1D I) 

The method of one-dimensional quadratic Lagrange 
interpolation is applied – the interpolation point and 
the nodes are on the same line. 
In this case the interpolation point is also the center 
of the cube. We use 3 nodes of the base lattice so 
that the nodes and the interpolation point belong to 
the same diagonal. 

 
Fig. 2. Base nodes and interpolation point for one-dimensional 

Lagrange interpolation 

The base polynomial has the form 
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and satisfies the conditions 
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The interpolation polynomial is represented as  
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where где fn is the value in the base node (xn,yn,zn). 
As in the previous case (4) means that the interpo-
lation is performed by coordinate-wise.  

2.3. Cubic spline 

Let a function f(x) be defined on a segment [a,b]. 
Consider a partition of the segment ],[ 1ii xx , whe-
re .1,...0,,0 nibxax n  A function S(x) is 
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said to be cubic spline for f(x) if it satisfies the con-
ditions:
1. on every element of the partition S(x) is the 

polynomial with power not greater than 3; 
2. the first and the second derivatives of S(x) are 

continuous on [a,b]; 
3. nixSxf ii ,..0),()( ; 

4. 0)()( bSaS . 

As it is known [2], the function S(x) is defined by the 
conditions uniquely. 
The polynomial S(x) on the segment [a,b] is con-
structed by the following way:on every element of 
the partition ],[ 1ii xx  we write interpolation poly-
nomial in the form  
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By writing the above conditions we obtain a system 
to find the coefficients iiii dcba ,,, . 

The coefficients are obtained by sweep method 
applied to the matrix of the system. 
One can obtain a complexity estimation for the de-
scribed algorithm [2]. Let n be the common number 
of points and k be the number of point where we 
know values of the function. Time complexity of 
sweep method for 3-diagonal matrix is O(n). Time 
complexity of the interpolation in every from n-k 
points is O(k). So time complexity of the algorithm is 
O(n)+(n-k) O(k). If k depends on n linearly, then ti-
me complexity is )( 2nO . If  is a constant we ob-
tain O(k). 
The method of cubic spline is used coordinate-
wise,i.e coordinates of magnetic induction vectors. 
Supposing that parameters of parallelepiped bound-
ing the area where electromagnetic induction is 
calculated are l (length), m (width), and h (height), 
the asymptotic estimation for time complexity is 
O(lmh). 

3. RESULTS OF EXPERIMENTS FOR  
3-DIMENSIONAL LINEAR AND ONE-
DIMENSIONAL QUADRATIC INTERPOLATION 

We analyzed run-time for programs implementing 
the algorithms by the following way. For a given 
base lattice electromagnetic induction vectors are 

calculated in the nodes. The interpolation is per-
formed in the centers of cubes of the lattice. The 
number of nodes in the base lattice (n) is compara-
bly with the number of interpolation points (n/8), that 
allows us to compare run-times of calculation and 
interpolation objectively. 
To estimate miscalculation we find norms (module 
maxima) of two 3-dimensional arrays: obtained by 
calculation (B) and by linear interpolation (L) and 
square one (S). The interpolation coefficients are 
defined as L/B and S/B. The table 1 shows that 
miscalculation is not greater than 8 % for linear 
interpolation and not greater than 12% for quadratic 
one. As 3-dimensional linear interpolation (3d I) 
uses 8 nodes, it has the greater accuracy than 
quadratic one. In experiments we considered the 
area 600x500x232 mm. In the table the number of 
base nodes is given depending on the step by eve-
ry dimension. 

Table 1. Comparing run-times of algorithms 

Lattice size Run time(sec) Interpolation 
coefficient  

n 

step(mm) 

Base algo-
rithm 3d I 1d I 3d I 

(L/B) 
1d I n 
(S/B) 

70000 10 6 1 <1 0.92 1.03 
200000 7 17 2 1 0.93 1.10 
550000 5 49 8 5 0.96 1.10 

2550000 3 228 38 25 0.97 1.12 

 
Fig. 3. Diagram of the algorithms run times 
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4. RESULTS OF INTERPOLATION  
BY CUBIC SPLINE  

In experiments we used the data obtained by calcu-
lation in the points of integer lattice with size 
100х100х100 (module1). Then we constructed sets 
of initial data for interpolation as all the points of the 
base lattice with coordinates: a) by module 2; b) by 
module 4; c) by module 8 and d) by module 16. 
Interpolation by cubic spline method was performed 
in the inter lattice points by module 1. The results 
were compared with given data. In the table run 
times (in sec) of the methods are given. 
 

Config. a b c d 
Run time 6.912 4.896 4.541 4.356 

The following figure shows the initial magnetic field 
(obtained by calculation) and results of visualization 
for configurations a), b), c), d). The most reliable 
results were obtained for configurations a) and b), 
i.e. for interpolation nodes being on the distance not 
greater than 4 in the integer lattice. 
 

 
Initial data                             a  

 

 
                        b                                             c 

 
d 

 
 

5. CONCLUSION 

The interpolation of electromagnetic field in magne-
totherapy devices is very important because it re-
duces runtime considerably. The results of experi-
ments show that all the described interpolation 
methods give reliable results. 
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