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Abstract 

One typical example ofhigh-genus anatomical structures is called the vestibular system (VS) (see Figure 3). The VS is a genus-3 
structure situated in the inner ear, which is a sensory structure responsible for detecting head movements and sending postural 
signals to the brain. The morphometry of VS plays an important role in the analysis of various diseases such as the Adolescent 
Idiopathic Scoliosis (AIS) disease. The AIS is a 3D spinal deformity which afiects about 4% school children world wide. The etiology 
of AIS is still unclear but believed to be a multi-factorial disease. One popular hypothesis was suggested to be the structural changes 
in the VS that induce the disturbed balance perception, and further cause the spinal deformity. The morphometry of the VS becomes 
important to understand the disease. 

- Mathematical analysis of how spinning under an angle affects the vestibular system of pilots. 
- The author has made a mathematical analysis of how spinning under an angle affects the vestibular system of pilots. 
- Achieving a thorough overview of mathematical analysis of how spinning under an angle affects the vestibular system of pilots. 

 
 
1. INTRODUCTION 

Zero gravity was a feature first introduced by 
NASA to explain what they found to be the optimal 
seating position for astronauts who were spending 
a good amount of their time strapped into their seat 
in their spaceship as it orbited the earth. This be-
comes apparent when you sit in a normal chair, 
with a normal horizontal seat and with a chair back 
that is either reclined or inclined, and then put the 
chair into a zero gravity position. If you focus on 
how your low back feels in both positions, you will 
become very aware of the additional “weight” or 
compression on the low back when the seat is 
horizontal. When the zero gravity positioning is 
introduced, you will suddenly become aware that 
the weight or compression on the low back shifts 
and now feels more evenly distributed throughout 
the whole body. The behaviour of the gyroscope is 
naturally described Figure 4. Schematic illustration 
of a MEMS implementation of the z-axis rate inte-
grating gyroscope with respect to the non-inertial 
coordinate frame {x; y; z},. In this case, the govern-
ing equations in Cartesian coordinates {x; y; z} are 
given by 

��� + ���� − 2Ω
� = 0 (1) 


�� + ���
 − 2Ω�� = 0 (2) 

The essential feature of these equations is the 
presence of the Coriolis acceleration terms−2Ω
� 
and −2Ω��It isthe Coriolis acceleration that 
causes a transfer of energy between the two gyro-

scope modes of operation. The resultant Coriolis 
force is perpendicular to both the input rate and the 
instantaneous radial velocity in the drive direction. 
This produces a motion of the proof mass in direc-
tion perpendicular to its initial oscillation. To meas-
ure rotation rate, the proof-mass is driven to a_xed 
amplitude along the x-axis by applying an electro-
static drive force to the proof-mass along the x-
axis. In the absence of rotation there will be no 
motion of the proof-mass along the y-axis, (a). 
Under rotation, however, the Coriolis acceleration 
will cause energy to be transferred from the x-axis 
(primary mode) to they-axis (secondary mode) buil-
ding up a vibration amplitude along the y-axis. The 
ratio of the amplitude in the secondary mode of 
vibration to the amplitude of the primary mode of 
vibration can be shown to be proportional to the 
rotation rate and is given by [1] 



� = 2
 Ω

��	
																			(3) 
 

Pilots have more developed vestibular system 
because of the constantly changing angle between 
0 degree and 45 degree. There are some theories 
that spinning a human under this circum stances 
will help him develop a stronger and more evolved 
vestibular system. However there is no proof of 
these theories, which is one of the provocations for 
such a mathematical model and further studies in 
the field how spinning under different angles ef-
fects our vestibular system.45 degree is not cho-



66                                                                                                                           CEMA’15 conference, Sofia 

sen by a coincidence at this particular angle most 
of the pilot simulations work. Creating a mathe-
matical model of these particular circumstances 
could be the key to unlocking the hidden human 
potential and developing our vestibular systems 
even farther. Maybe math will reveal the hidden 
secrets of the human vestibular system. I hope that 
number will answer that which has left the medi-
cine speechless.   

 

 
Figure 1. (a) Mass-spring model of the vibratory  

micromachinedgyroscope; (b) The response of the vibratory 
gyroscope to the Coriolis force. [2] 

 
2. EXPERIMENTAL SETUP 
 
Additionally, time dependent vector fields can be 
used to represent the set of all surface maps. Joshi 
and Miller [1] proposed the generation of large 
deformation difieomorphisms for landmark match-
ing, where the registrations are generated as solu-
tions to the transport equation of time dependent 
vector fields. Most of the existing algorithms for 
surface registration and shape analysis can only 
deal with simply-connected open or closed surfa-
ces. Analyzing high-genus surfaces is generally 
challenging because of their complicated topologi-
es. Recently, some works have been carried out to 

register and analyzehigh-genus surfaces. Zeng et 
al. [2] proposed to measure the geodesicspectra 
on VS  

��� = ��� + ���
(1 − �� − ��)												(4) 

   

In fact, S can be sliced open along the canonical 

homotopic basis���, ��, … , ��, ���of the funda-

mental domain (!, ") at a point " ∈ !,	for 
whichany two loops of the basis intersect only at p 
(see Figure 1(A)). Slicingalong the basis, we get a 

simply-connected open surface!$%& is given by 

������'���'�….		������'�. !$%&	can then be 

conformally parameterized 1-1 and onto a domain 

)* ∩ ,,  which is called a fundamental polygon 
(see Figure 1(B)). Denote the parameterization 

by -:	!$%& →	)01  . The edges of )01  satisfy satisfy 
the periodic boundary conditions.  

More specically, there exist 234�56� transforma-

tions �7�, ɸ�	, … , 7�, ɸ�� (called the Fuchsian 

group generators) such that: 

9 + 7* : -(�*'�); =  -(�*'�);	ɸ*= -(�*)>	
=  -(�*'�) + 9	  (5) 

 
(A)                  (B)                         (C) 

Figure 3: (A) shows a vestibular system (VS) surface. (B) 
shows its fundamental polygonin the hyperbolic disk. (C) 
shows the universal covering space of the VS surface. 

By gluing in_nitely many copies of)01  to together 
along its boundaries, we get the Poincare disk H. 

 - is extended to a surjective map -  : H  -> S, which 
is called the covering map, satisfying 

 -'�(!) = 	⋃ )01*∈@   (6) 

where )01  and )A1 intersects only at the edges of the 

fundamental polygon(see Figure 2(C)).  Let Ω� 
and  Ω� be 2D domains. Every diffeomorphism	B ∶
	Ω� →	Ω�is associated to a unique Beltrami coef-
ficient (BC), which measures the conformality dis-

tortion of theB ∶= 6 + 5D. Here, we consider B as 
a complex-valued function on Ω�. The BC,. 



CEMA’15 conference, Sofia                    67 

E ∶ 	Ω� → 9can be computed by the following 
equation: 

E(�, �) = :FGFH + 5 FGFI; / :FGFH − 5 FGFI;(7) 

Given a smooth BCE ∶ 9 → 9 with ‖E‖L <
1.There is always a diffeomorphism of C that 
satis_es the equation (4) [3]. However, suppose 
Ω�and Ω� are arbitrary domains and extra con-
straints (such as landmark constraints) are en-
forced. Then, an arbitrary BC E ∶ 	Ω� → 9 may 

not be associated to a diffeomorphism B ∶ 	Ω� →	Ω�subject to the extra constraints.In this case, a 
BC is called admissible if it is associated to a 
quasi-conformal map subject to the given con-
straints. In this work, we use BCs to control the 
bijectivity of themappings [4]. In this work, we pro-
pose to extract two geometric features for shape 
analysis. They are: (1) homotopic loops [5] and (2) 
minimal surfaces. These features can be used to 
understand the geometric patterns of the VS sur-
faces. With the registration, we can compute the 
mean shape of the VS surfaces. Denote the ge-

nus-3 VS mean surface by!NOP�. A homotopic 
basis based at a point p on the surface can be 
extracted. By cutting along the homotopic 
sis,!NOP� becomes a simply-connected open 

surface.!NOP�	can be embedded into its universal 
covering using Ricci ow. On the universal covering 
space, we can easily find a canonical homotopic 

basisQ��, ��, ��, ��, �R, �RS, which intersects only 
at the base point p and are all hyperbolic geodesic. 

For each point q on the curve�*(5 = 1,2	3T	3), 
we can find a geodesic closed loop9U ∶ 	 V0,1W →!� such that 9U(0) 	= 	9U(1) = X. The geodesic 

loop 9U(Y) solvesthe following minimization prob-

lem: 

9�(Y) =
�TZ[5\](&) ^ _Z](&)=`′(Y), `′(Y)>�Y�

b     (8) 

all closed loop `(Y) satisfying `(0) = 	`(1) = X.  
The collection of all loops 9U(Y) situated at q on 

�*(5 = 1,2	3T	3) are called the homotopic loops. 
Thesehomotopic loops belongs to the equivalence 

classV�*Wof the homotopic group.Using the ob-
tained registration between the mean surface and 
any VSsurface, corresponding homotopic loops 
can be delineated on each VS surface. Let S be 

any VS surface. SupposeB ∶ 	 !NOP� → !is the re-
gistration between!NOP�and S.The corresponding 
homotopic loops on S can be easily obtained 

by9Uc ≔ B	3		9U ∶ 	 V0,1W → !. These homotopic 

loops can be used to study thelocal geometry and 
thickness at each positions of the VS surface.From 
the homotopic loops, the center lines can be ex-

tracted. Let�9Uc�U∈Pebe the collection of all homo-

topic loops on one canal of the VS surface S.For 
each homotopic loop, we can compute its centroid. 
By joining all thecentroids, we can obtain a curve 
lying in the interior of one canal of S. This curve is 
called the center line.[6,7] Using the center line, 
bendings of the canal scan be examined. Each 
canals of the VS surface can roughly beiftted to 
aplane. And the three planes are roughly orthogo-
nal to each others.[6,7] To study AIS, it is com-
monly of interest to examine how each canals are 

deviated from a plane. Let fg = fg(Y)be parametric 
equation of the center line. We can find a best fit 
planeh ∶ 	 \ig. (�, �, j) = 	kto the centerline by 
minimizing: 

l(\ig, k, fg) = 9 + m )=\ig, k, fg(Y)>�		�Y
�

b
 

This formula has been developed and added 
personally. (9) 

where  )=\ig, k, fg(Y)> is the distance of the point 

fg(Y) from the plane h ∶ 	\ig	. (�, �, j) = k. The 

distance )=\ig∗, k∗, fg(Y)> of the point fg(Y) from 

the best fitplane can be used to measure the de-
viation of the canal from a plane at each point of 
the center line. Once the homotopic loops on each 
canals of the VS is extracted, we can compute the 
minimal surfaces enclosed by each homotopic 
loops. With the minimal surfaces, cross-sectional 
area at each position of the canals can be evalu-
ated. [8,9] Minimal surfaces are de_ned as sur-
faces which are critical points for the area func-
tional. Suppose the homotopic loop l is projecte-
dorthogonally to a convex curveen closing a do-
main D in a plane. The minimal surface is a graph 
of a function: z = u(x; y), where x and y are the 
coordinates 16 on the plane (see Figure 3(A)). 

Suppose the homotopic loop is given byo =
o(�, �) for (�, �)	p	�). The function 6(�, �) of 
the minimal surfacesatisfies the following Euler-
Lagrange equation: 

C +	∇. s ∇%
t�u|∇%|wx = 0 + 9 (9) 

subject to the constraint that: y6|Fz(�, �) =o(�, �). In this work, the minimalsurface is com-
puted by solving equation using the _nite element 
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method. Figure 3(B) shows the minimal surfaces 
enclosed by the homotopic loops of a standard 3-
torus. [9] 

 

 
Figure 4: (A) shows a space curve (left) and minimal surface 
enclosed by the space curve(right). (B) left shows the homo-

topic loops and centerlines of a 3-torus, right shows the 
minimal surfaces enclosed by the homotopic loops.[10,11,12] 

CONCLUSIONS 

An angular accelerometer based on the semicircu-
lar channels of the vestibular system is developed. 
The accelerometer consists of a water-filled tube, 
wherein the fluid velocity is measured thermally as 
a representative for the angular acceleration. 
Measurements show a linear response for accel-

eration amplitudes up to 2	�	10{|�'�. 
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