
SOFTWARE FOR ANALYZING EMG SIGNALS EMGLab

Viktor A. Nedialkov

Department of Radio Communications and Video Technologies, Faculty of Telecommunications,
Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000, Bulgaria

Abstract

A software for analyzing EMG signals in real-time has been developed. The purpose of the software is to analyze the behavior of the
human gait and help develop new algorithms for incorporation in active prosthetics.

The software is intended to work with the portable EMG multichannel recorder developed previously.

1. INTRODUCTION

In the process of development of an active EMG
prosthesis a multichannel EMG processing device
has been built. The device is intended to collect
EMG signals from several muscles, amplify, digi-
tize and send the data to PC via Bluetooth or USB
link.

Below a general block scheme of the design is
shown.

Fig. 1. (Block scheme of the device)

Fig. 2. The device prototype

A digital signal with Fs (discretization frequency)
of 2000Hz per channel is produced by the device.

The raw EMG signal must be transformed to a
signal more suitable for analysis of the behaviour
of the muscles. An algorithm has been developed

to detect muscle contraction with a possibility to
assess the level of contraction in real-time [1].

The algorithm is based on the Pan-Tompkins QRS
detection algorithm. It has four stages in signal
processing. Bandpass filtering to remove unwanted
noise. Differentiation stage to emphasize the high
frequency signal. Integration stage to make the
result positive and further emphasize the large
differences. The moving average smooth the mul-
tiple peaks from the squaring operation.

Fig. 3

For the development of the software Microsoft
Visual Studio 2010 is used with development lan-
guage Visual C++. The reason for that is we have
already written similar code which will reduce the
time for development.

The software has the following main stages
- Communication
- Signal processing
- Visualization

2. COMMUNICATION

Communication is achieved via virtual serial port.
The data from the device is send after every dis-
cretisation period, which is set at 2000 Hz. The
communication speed is 115200bps. Data is sent
packed in the following protocol AAh, MSB1, LSB1,
MSB2, LSB2.

Where AAh is a sync byte to select the start of a
packet. The signal data is 12-bit long packed in
two bytes.

92 CEMA’15 conference, Sofia
The communication port is opened with the func-
tion

m_hCommPort=CreateFile(com_port,GENERIC_RE
AD | GENERIC_WRITE,0,0,OPEN_EXISTING,0,0);

which creates a handle to the port. Then we set
the setting of the port when we first get the current
settings, edit the variables we want and write the
edited setting back:

::GetCommState(m_hCommPort,&dcb)

dcb.BaudRate=CBR_115200;

dcb.ByteSize=8;

dcb.Parity=0;

dcb.StopBits=ONESTOPBIT;

::SetCommState(m_hCommPort,&dcb)

The method chosen for receiving data is data pool-
ing the communication port at a set period. For that
we start a timer with a period 2ms with the follow-
ing:

SetTimer(1,2,NULL);

Every 2 ms an event is triggered and event handler
is called. The event handler calls the communica-
tion function. The communication function pools
the serial port for available data and transfer the
available data to the temporary buffer.

do

{

If(!::ReadFile(m_hCommPort,chBuffer,sizeof
(chBuffer),&bytesRead,0))

{

 ErrorCode=GetLastError();

}

for (int i=0;i<bytesRead;i++)

{

 mBuffer.push_back(chBuffer[i]);

 m_buf_lenght++;

}

while (bytesRead>0);

After that the function is searching for the sync
byte and deletes all data until it finds it. If the first
byte in the buffer is a sync byte the function sets a
variable that there is available data.

double received_data =
(double)(256*mBuffer[1] + mBuffer[2]);

double received_data2=
(double)(256*mBuffer[3] + mBuffer[4]);

packet[0]= received_data;

packet2[0]= received_data2;

Communication is terminated with the functions

KillTimer(1);

CloseHandle(m_hCommPort);

Which closes the timer event and also closes the
handle of the virtual COM port.

After a data byte is ready, it is processed by the
signal processing stage of the program.

3. SIGNAL PROCESSING

The signal processing stage is divided by the fol-
lowing sub-stages

- Derivative function
- Squaring function
- Moving Average function
- Screen coordinated calculation

The derivative operator is calculated by the follow-
ing lines:

double CEmgLabView::Derivative(double *
packet)

{

double derivative=0;

mDerBuffer.push_back(packet[0]-2048);

mDerBufferCounter++;

if (mDerBufferCounter>5)

{

derivative=(double)(2*mDerBuffer[5]+mDerBu
ffer[4]-mDerBuffer[2]-2*mDerBuffer[1]);

derivative=derivative*0.125;

mDerBuffer.erase(mDerBuffer.begin());

mDerBufferCounter--;

return derivative+2048;

}

else

{

 return derivative;

}

}

CEMA’15 conference, Sofia 93

The last received data is passed to the function,
corrected for polarity and pushed into buffer, from
which the derivative is calculated.

The squaring is a simple square operation of the
derivative result.

The result is then passed to the moving average
calculation function

double CEmgLabView::MovingAverage(double *
packet)

{

double ma_result=0;

int MA_SIZE=500;

mMABuffer.push_back(packet[2]);

mMABufferCounter++;

if (mMABufferCounter>=MA_SIZE)

{

for (int i=0;i<MA_SIZE;i++)

{

ma_result=ma_result+mMABuffer[i]/MA_SIZE;

}

mMABuffer.erase(mMABuffer.begin());

mMABufferCounter--;

return ma_result;

}

else

{

 return ma_result;

}

}

The calculated result from the squaring operation
is inserted into a buffer, then a Moving Average
with depth of MA_SIZE is calculated with the For
operation.

The next step is to calculate the screen value of
the calculated data

Int lead0=Round(mVertOffset+0*mVertRes/6
+mVertRes/12-packet[0]/mAmplitude
+2048/mAmplitude);

The Y- screen coordinates are calculated based on
the screen resolution, offset and selected Ampli-
tude scale.

4. VISUALIZATION

The discretisation frequency is 2000Hz and the
serial port data pooling is set at 2ms. The calcula-
tion stage is performed for every data element of
the signal. The screen calculation is also made for
every data element but it is not possible to draw
directly to the screen with 2000Hz draw frequency.
That is why the process of visualization is divided
into two stages – Draw to memory and copying of
the memory buffer to the screen at a reasonable
frequency.

We first create the memory screen buffers

m_pMemDC->CreateCompatibleDC(pDC);

m_pBitmap->CreateCompatibleBitmap
(pDC,ClientRect.right,ClientRect.bottom);

Another buffer is also used for the raster of the
screen.

A timer is started with a period of 20 ms.

Every time an event is triggered the event handling
function executes a copy of the memory buffer to
the screen.

m_pMemDC->BitBlt(ClientRect.left,
ClientRect.top,ClientRect.right,ClientRect
.bottom,m_pMemDCRaster,0,0,SRCAND);

pDC->BitBlt(ClientRect.left,
ClientRect.top,ClientRect.right,ClientRect
.bottom,m_pMemDC,0,0,SRCCOPY);

The first line copies the screen raster to the mem-
ory buffer and the second line copies the memory
buffer to the screen.

5. EXPERIMENTS

The software was tested also to verify the accuracy
of the muscle contraction detection algorithm. Be-
low are screenshots during testing

Fig. 4. Rectus femoris during walking

94 CEMA’15 conference, Sofia
6. CONCLUSIONS

The software is working properly and is achieving
its purpose to allow us to analyse and develop
different algorithms for active prosthetics control.
The real-time graphics is moving smoothly without
glitches with the method of visualization chosen
and the system is not loaded additionally by the
program.

Further development of the software will include
data storing and offline analysis of the stored sig-
nals.

Also an active prosthetics simulation module will
be added.

References

[1] Pan J. and Tompkins W. J. “A real-time QRS detection
algorithm.” IEEE Transaction on Biomedical Engineer-
ing, 32:230-236, 1985

[2] Rangaraj M. Rangayyan, “Biomedical Signal Analysis”
Wiley-Interscience

[3] Joseph Bronzino, “The Biomedical Engineering Hand-
book” CRC Press

[4] Webster J, “Medical Instrumentation – application and
design” John Wiley & Son.

