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Abstract 

The methods of multifractal analyses are now widely used because they allow us to describe digital images with complex structure. 
For an image one may a set of fractal dimensions of its subsets – multifractal spectrum. There are two kinds of spectra – multifractal 
and Renyi spectra. Theoretically they are connected by the Legendre transform, but when working with experimental data this rela-
tion may not be true due to the dependence of results on many factors. Nevertheless the obtained multifractal characteristics may be 
successfully applied to image classification. We discuss some problems connected with spectra calculation and results of experi-
ments. 

 
 

1. INTRODUCTION 
 
The number of high-resolution digital images having 
complex structure grows steadily in various areas of 
scientific exploration. These data are of great im-
portance in biology, medicine, geology. Currently 
there is the tendency to apply fractal and multifrac-
tal methods for analysis and classification of such 
images, because these methods are more appro-
priate to describe complex textures. 

Fractal methods are based on the assumption that 
a measure of an element of the image partition (cell 
or box) is approximately equal to the cell size to a 
power. Fractal sets may be characterized by one 
power, which is called also by scaling or singularity 
power. In particular capacity dimension is deter-
mined by this power. For multifractal sets, which are 
unions of different fractals, one can obtain a set of 
dimensions — multifractal spectrum. This charac-
teristic may be used as a classification criterion for 
image analysis. 

It should be noted that the calculation of multifractal 
characteristics is based on using so called statisti-
cal (information) approach. The natural measure 
distributed on the image is expressed in terms of 
pixel intensities. It is calculated for each cell, and 
then the measure is normed, so we obtain a prob-
ability distribution. 

There are two spectra describing a multifractal set: 
the spectrum of Rényi dimensions and multifractal 
spectrum. Theoretically, there is a connection bet-
ween them that is called the Legendre transform. 

But such is not necessarily the case for experimen-
tal data. The discussion of possible reasons and re-
sults of calculation for some classes of images are 
given in [4, 6]. 

In our practice we calculated both spectra for com-
plex texture images from various classes of biome-
dical preparations. This work summarizes the ob-
tainned results and discusses possible reasons of 
discrepancy between typical multifractal spectrum 
and the spectra constructed by experimental data. 

2. MULTIFRACTAL SPECTRA, STATISTICAL 
SUM AND OTHERS 

Textures are often may be considered as fractal (or 
multifractal) sets. Fractal sets have a self-similarity 
property that may be characterized by a scaling 
exponent. A union of several fractals, which of them 
has its own fractal dimension, is called multifractal. 
It is usually assumed that an image is partitioned by 

cells with size     the number of cells is      and 
the measure of  -th cell 

              (1) 

The numbers    are called singularity (scaling) 
exponents. Then we combine cells with close expo-
nent values in subsets and calculate fractal dimen-
sions      . Hence we have a correspondence 

          Fractal dimensions form so called multi-

fractal spectrum. 

In many cases the graphic of multifractal spectrum 
has a canonical parabolic form [3,5,6]. The situation 
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may be illustrated for two-scale Cantor set or the 
attractor of baker transformation, when one can 
define a measure distribution by analytical way. But 
for complex textures the obtained graphic may differ 
from the canonical one considerably. 

There is another kind of spectrum – Renyi dimen-
sions. Consider a partition of an image, a measure 

       and the generalized statistical sum 

                                
    

    
    ,                (2) 

where q is a real parameter. 

We assume that there is such a function      that 

                (3) 

Then            
        

   
, and Renyi spectrum 

is defined as 

    
 

   
       (4) 

For q = 0, 1, 2 we obtain capacity, information and 
correlation dimensions respectively. 

One may obtain a connection between these spec-
tra. We assume that the number of cells whose 

singularity exponents are in interval of the length   
is also distributed by a power law, i.e. there is a 

distribution function            . Then we 
substitute the cell measure in statistical sum (taking 
into account (1)), express the sum by using the 
distribution function as an integral, and for any q 
find a condition when the statistical sum is maximal. 
These actions result in obtaining the relation  

                     ,  (6) 

which is well known as the Legendre transform from 

variables (        to (            

When      and    are smooth function of   and 

q,      may be obtained from this relation. But in 

practice we usually know    only in several points 

with variable precision, so the application of the 
Legendre transform is incorrect.  

In this connection in [3] a method of the calculation 
of multifractal spectrum without using Legendre 
transform was proposed. Given an initial distribution 
       , construct the sequence of measures 
                 obtained by the direct multi-
fractal transform: 

          
  

 
   

  
 
 
    

   

.  (5) 

Then we calculate singularity spectra and the 
Hausdorff dimensions of the supports of measures 

        as the functions of the parameter q of the 
statistical sum. Excluding q we obtain     . 

3. METHODS OF CALCULATION  

One may point out two methods for calculation of 
the spectrum. 

3.1. Density function 

This approach was proposed in [7] and used for 
image segmentation in [1,2]. 

We consider a special function (density function) to 
calculate the singularity power for every pixel. Then 
we combine all the pixels with close values of den-
sity function, which results in partition of the image 
on the subsets – so called level sets. For each level 
set we calculate its fractal dimension.. 

Let   be a measure defined through pixel intensi-

ties. For 2Rx  we denote ),( rxB a square of 

length   with center  . Let )()),(( )( xkrrxB xd

, where )(xd  is the local density function of   and 

  some constant. Then 

r

rxB
xd r

log

)),((log
lim)( 0




. 

The density function measures the non-uniformity of 
the intensity distribution in the square ),( rxB . The 

set of all points   with local density   is a level set 

})(:{ 2   xdRxE
 

In practice, not to increase the number of level sets, 
one really consider sets 

)}.,[)(,{),( 2   xdRxE  

In [2] we constructed spectra for images of healthy 
liver and liver with a decease. Graphics did not 
have canonical form and depended from the meas-
ure choice considerably.  

3.2. Using statistical sum  

The second method uses statistical sum (2) and the 
sequence of measures (5) generated from the initial 



CEMA’16 conference, Athens, Greece  19 

measure by the direct fractal transform [5]. The 
method was proposed in [3] and is based on the 
calculation of the Hausdorff dimension of a meas-
ure support M by the formula 

                           
       

 
   

   
  (7) 

The direct multifractal transform results in a trans-
formation of the initial measure by using statistical 
sum, and hence it depends on q as well. For any 
measure from the generated sequence one may 
calculate the singularity power averaged over the 
measure and the fractal dimension of the support of 
the measure corresponding to this singularity 
power. Hence we obtain the averaged singularity 

spectrum     , and the fractal dimension of the 
support of the measure      as functions of the 
parameter q. Eliminating q one can obtain the rela-
tion between singularity values and fractal dimen-
sions of corresponding subset.  

For each measure        one can calculate the 
Hausdorff dimension of its support by formula (7). 

As q changes, we have a set      of the Hausdorff 
dimensions of        supports, where 

            
                  

   

   
 

                           
      

   
.  (8) 

We also calculate averaging exponents over the 
measure       , i.e. 

           
                

   

   

 
    

      

   
, 

and then the limit      of these averagings when 

. Hence, we obtain 

            
      

   
.  (9) 

Such a method allows us to obtain the set of di-

mensions (multifractal spectrum)      and the set 
of averaging exponents      as functions of the 
parameter q. 

In practice, to obtain the above values by (8) and 
(9), we should do the following. For every q we take 

several values of variable  , calculate sets of points 
             and              respectively. 
Then, by using the least square method, we deter-

mine the approximate values of      and     . 
Thus, we have the set of the Hausdorff dimensions 

of the supports of the measures that are obtained 
from the initial measure by the direct multifractal 
transform. 

It is interesting to note that substituting         
  

 
   

  
 
 
    

   

 in (8) we obtain 

        
   

                 
 
   

   
  

   
   

          
  

    

   
     

 
   

   
  

    
   

               
 
   

   

    
   

                 
   

   
  

         
   

      

   
             

Besides that, 

     

  
    

   

 

   

   
            

   
 

    
  

   
   

 
  

    

   
 

    
        

   
  

    
   

                

   
       

Experiments were performed for Brodatz textures 
and various classes of biomedical preparation im-
ages. Practically in all cases the obtained graphics 
did not correspond the expected canonical form. 
We illustrate the situation for the image of pharma-
cological solution of Ag. (Fig.1) 

The measure of a cell is the ratio of the sum of pixel 
intensities to the sum of intensities for the whole 
image. The calculations were performed for H com-
ponent of HSV palette 

. 

Fig. 1. Pharmacological solution of Ag 

0l
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Fig. 2. Singularity and multifractal spectra 

 

Fig. 3. Graphic      obtained by excluding q 

 

Fig. 4. Graphic      obtained by Legendre transform 

 

CONCLUSION 

There are a lot of reasons that influence on the 
results. First and foremost the subsets of a multi-
fractal are arranged by rather complicated manner, 
so that the problem of their separation may be 
solved only approximately. The cell measure may 
be calculated as the ratio the sum of pixel intensi-
ties of the cell to the common sum of intensities of 
the whole image, or as the ratio of the number of 
black pixels to the common number of black pixels 
(or the same for white ones), which means the im-
plicit binarization of a grayscale image. For color 

images their reducing to grayscale ones may lead 
to a loss of the image structure, so we should con-
sider the palette components separately. It is un-
known a priori if the averaged characteristics may 
give a good approximation to the image measure. 
The question how to choose the range for q is also 
may be solved experimentally. It is easy to under-
stand that there are no common rules to select the 
parameters for calculation, because they are de-
fined by an image structure to a great extent. 

Our experiments show that when using both the 
described methods we may not obtain canonical 
graphics due to dependence of results on many 
factors. 

This circumstance should not prevent us from ap-
plying these techniques for calculation multifractal 
characteristics that are classification criteria in digi-
tal image analysis. 
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