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Abstract 

In this paper the scattering of electromagnetic (EM) waves, emitted by a monostatic radar, from rough fractal surfaces is examined 
by using the Kirchhoff approximation. We examine here the way that the level of roughness of the fractal surface affects the back-
scattered EM wave captured by a radar as a function of frequency (therefore, a ‘spectral method’), and whether the roughness of the 
surface can be estimated from these radar measurements. The backscattering coefficient is calculated for a number of radar fre-
quencies and for different values of the surface fractal dimension. It is found here that the values of the slopes between the main 
lobe and the first sidelobes of the backscattering coefficient as a function of the wavenumber (frequency) of the incident EM waves 
increase with the surface fractal dimension. Therefore, we conclude that the magnitude of the above slopes provides a reliable 
method for the classification of the rough fractal surfaces. The above are also investigated in the presence of electronic noise in the 
radar receiver (effect of SNR values in the above proposed technique). 

 
 

1. INTRODUCTION 
 
The scattering of electromagnetic (EM) waves from 
rough surfaces has been for decades a very inter-
esting subject for scientific investigation. In many 
cases the main purpose of this research is the 
characterization of rough surfaces from scattered 
EM wave data for remote sensing applications, in 
the microwave or optical regime [1]–[16]. These 
surfaces can be modelled mathematically with de-
terministic or random functions [1]–[3]. However, 
introducing the fractal geometry, these surfaces can 
be described in a more detailed way in multiscale 
[1], [3], [8], [17]. 

In this paper the scattering of EM waves from rough 
surfaces using the Kirchhoff approximation is exam-
ined [1], [2]. In particular, in Section II the mathe-
matical fundamentals for scattering of EM waves 
from fractal surfaces are summarized [1]–[3].  

In Section III our simulation results for the charac-
terization of the rough fractal surfaces from 
backscattered EM wave data are presented. Finally, 
conclusions and future related research of ours are 
described in Section IV.  

2. PROBLEM GEOMETRY  
AND MATHEMATICAL FORMULATION  

The geometry of the problem is shown in Fig. 1. An 
incident EM plane wave illuminates a one – dimen-

sionally rough fractal surface extending from x = – L 
to x = L, as shown in Fig. 1.The angle of incidence 
of the EM wave is θi with respect to the vertical z 
axis, where the incident and scattered wave vectors 
are denoted by ki and ks respectively [1].  

 

Fig. 1.  Geometry of rough surface scattering problem in 
which an incident plane wave illuminates a fractal surface 

patch of size 2L at an angle θi 

Following [1], and in order to describe the surface 
roughness, a one-dimensional fractal function is 
used [1], [3], [4]. This fractal function is described 
by the following equation:  
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where D ( 1 < D < 2) is the fractal dimension of 
fractal surface [1], K0 = 2π/Λ0 is the fundamental 
spatial wavenumber of the fractal surface, Λ0 is the 
corresponding fundamental spatial wavelength, b 
(where b > 1) is the spatial frequency scaling pa-

rameter, n are arbitrary phases and N is the num-
ber of tones describing the surface. The amplitude 
control factor C is given by 
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so that surface function (1), has standard deviation 
(rms height) equal to σ (see [1]).  It can be easily 
realized from (1) above, that when the surface frac-
tal dimension D increases from value 1 to value 2, 
the surface roughness also increases (see [1], [3] 
for more details).  

In order to calculate the scattered field from a rough 
fractal surface, as described in Fig. 1, the Kirchhoff 
approximation is used in this paper, for which it is 
assumed that the wavelength of the incident EM 
wave is small compared to the local radius of curva-
ture of the surface roughness [1]–[3].  Furthermore, 
for the plane EM wave incidence of Fig. 1, in [1] it is 
shown that the scattered electric field is given by 
the following equation: 
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In the above (3)–(7) R0 is the distance from the 
observation point (monostatic radar) to the origin, 
coinciding with the ‘source surface point’, k is the 
wavenumber of the incident EM wave (k=2πf/c, 
where f is the frequency of the incident EM wave), 
R is the Fresnel reflection coefficient of the tangen-
tial plane at the point of interest, θs is the direction 
of the observer and 

rf   is the derivative with respect 

to its argument (x). For simplicity we assume a 
perfectly conducting rough surface, in which case 
the Fresnel reflection coefficient is given by (R+ = 1, 
R– = 1), where the superscript + indicates the paral-

lel (vertical) polarization and the superscript – de-
notes the perpendicular (horizontal) polarization, 
respectively [1], [2]. 

In the case of a smooth and perfectly con-

ducting surface, the scattered field for hor-

izontal polarization can be found in the 

direction of specular reflection, namely for 

 [1], [2]: 
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By normalizing the value of the scattered field Esc of 
(3) by the value provided by (8), the scattering coef-
ficient  is calculated by [1]:  
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The first term in the parenthesis provides the most 
significant contribution to the scattering process, 
while the second term represents an edge effect, 
which can be considered negligible when L >> λ, as 
assumed in this paper. 

3. SIMULATION RESULTS 

We concentrate on the backscattering of EM waves 
from rough fractal surfaces (e.g. monostatic SAR 
radar [9], [10]), i.e. θs= –θi at Fig. 1 and (4)–(7), and 
we plot the backscattering coefficient |γ(k)| (in mag-
nitude). The surface is simulated as a zero-mean, 
band-limited fractal function, as in (1), and its 
roughness is controlled by the fractal dimension D  
[1], [3]. The backscattering coefficient |γ(k)| was 
calculated from (9) for a number of frequencies 

fmff om  )1( , where Mm ,...,2,1  and M is 

the number of frequencies, fo is the carrier fre-
quency, Δf = BW/M is the frequency step and BW is 
the bandwidth of the radar, i.e. ‘stepped – fre-
quency’ transmitted radar waveform [9], [10]. Fur-
thermore, in Figs. 2–5, below, the plots of |γ(k)| for 
angle of incidence θi =30o are shown, while the 
values of the other parameters are BW=1GHz, 
f0 = 10 GHz (initial radar carrier frequency) and M = 
200 (i.e. 200 frequency steps in radar emitted 
stepped-frequency waveform). 

As far as the simulated fractal surface is concerned, 
the frequency scaling parameter was set equal to 
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8.1b  while the number of tones was set equal 

to 6N  [1]. Moreover, the rms height of the sur-
face was set equal to σ = 0.05λ, Λ0 = 10λ = 0.3 m 
and the illuminated length of the rough surface 
along x-direction (‘patch size’) was chosen to be    
2L = 80λ (Fig. 1) in all calculations (so as 2L>>Λ0 

and kσ <1), where λ = c/fo [1], [18]. 

Furthermore, at the top left corner of each figure a 
sample plot of the roughness fractal function )(xf r

 

(1) is also shown.  

The roughness of the simulated fractal surface (the 
fractal dimension D ) is increasing per image, e.g. D 
= 1.05 (Fig. 2), D = 1.30 (Fig. 3), D = 1.55 (Fig. 4), 
D=1.80 (Fig. 5). 

By observing Figs. 2–5, the following conclusion is 
made: as the value of the parameter D increases, 
i.e. as the roughness of the fractal surface increa-
ses, the emerging slope between the main lobe and 
the side lobes also increases. 
 

 

 

 

 

 

 

 

Fig. 2.  Magnitude of backscattering coefficient |γ(k)|, as  
a function of the wavenumber k, for D = 1.05. 

 

 

Fig. 3. Magnitude of |γ(k)| as a function of the wavenumber  
k, for D = 1.30. 

Therefore, it becomes clear in our simulations that 
the roughness of the fractal surface can be charac-
terized by the mean slope between the main lobe of 

function |γ(k)| and the two sidelobes, adjacent to the 
main lobe (see Figs. 2–5).  

In Table 1, below, the relation between the fractal 
dimension D and the slope calculated from each 
graph is shown. The slope is equal to |Δγ|/|Δk|, 
where Δγ represents the amplitude difference be-
tween the peak of the main lobe and the peak of the 
first side lobe, while Δk represents the difference of 
the wavenumbers where these peaks occur. 

 

Table 1. Fractal dimension D and the resulting slope  
calculations 

 Left slope  

calculations 

Right slope 

 calculations 

D Δγ Δk slope Δγ Δk slope 

1.05 0.0000 0.00 0.0000 0.0000 2.62 0.0000 

1.30 0.0044 2.51 0.0018 0.0014 2.93 0.0005 

1.55 0.0285 5.03 0.0057 0.0202 3.77 0.0054 

1.80 0.0883 3.98 0.0222 0.0819 3.77 0.0217 
 

 

Fig. 4. Magnitude of |γ(k)| as a function of the wavenumber k, 
for D = 1.55. 

 

Fig. 5. Magnitude of |γ(k)| as a function of the wavenumber k, 
for D = 1.80. 

If the radar bandwidth decreases, then the informa-
tion provided by the backscattered signal-wave-
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number plots, of the type provided above, is not 
always enough in order to draw safe conclusions 
regarding the roughness (fractal dimension) of the 
surface. In other words, the bandwidth for our pro-
posed method of surface characterization from 
backscattered radar data must be sufficiently large 
(at least 5% of the carrier frequency

of ), in order 

that the information contained in the plots of Figs. 
2–5 to be observable and measurable. 

In order to study further the relation between the 
surface fractal dimension D and the slopes of the 
scattering coefficient |γ(k)|, some additional simula-
tions have been performed, as follows. The |γ(k)| 
was calculated sequentially for different values of 
fractal dimension D, D = 1.05, 1.10, 1.15, …, 1.85, 
1.90 (i.e. here for 18 subsequent values of parame-
ter D), while the rest of the parameters used in 
these simulations remained the same as in Figs. 2-
5. The left and right slope calculations of |γ(k)|, 
corresponding to each value of D, were averaged, 
thus creating one average slope calculation of |γ(k)| 
for each value of D.  

Furthermore, in order also to demonstrate the ro-
bustness of our proposed method, we inserted in 
(1) a uniformly distributed random phase variable φn 

in the interval [0, 2π], for every new surface simula-
tion run, namely for every different D value. The 
calculation results, after 10 simulations for each D 
value, are presented in Fig. 6, below. 

 

Fig. 6. Average slope’ of the |γ(k)| vs. value of the surface 
fractal dimension D. 

By ‘inverting’ the data (slope calculations and fitting 
curve) provided in Fig. 6, the plots of Fig. 7 are 
provided, where in this case the surface fractal 
dimension D is plotted as a function of the ‘slope 
calculations’ of the scattering coefficient |γ(k)|. 

 

Fig. 7. Value of surface fractal dimension D vs. ‘slope  
calculation’ of |γ(k)|. 

In Fig. 7 an analytical expression between the 
‘slope calculation’ and the surface fractal dimension 
D has been calculated numerically by ‘curve fitting’. 
Namely, it was found here that an excellent curve 
fitting exists if the fractal dimension D follows the 

relation cslopeaD b  * .  In Fig. 7 we plot the fit 

curve by using the following coefficients:  a = 2.29, 
b = 0.25, c = 0.913, and as a measure of fit to our 
calculations we use ‘R-square criterion for curve 
fitting’, which, for the above simulations, yielded the 
value R2 = 0.9934. We plot also the prediction 
bounds for the fitted curve. The prediction is based 
on the existing fit to our simulation calculations by 
using a 90% ‘probability of occurrence’. Based on 
the fitted curve model and the prediction bounds for 
the fitted curve, Tables 2 and 3 below are pre-
sented, as follows :   

            TABLE 2                                              TABLE 3        

     ESTIMATION OF DCALC           DCALC PREDICTION INTERVAL 

              USING PREDICTION BOUNDS  

D Slope Dcalc  
Dcalc 

lower 
D 

Dcalc 

upper 

1.05 0.0000 none  1.06 1.05 1.16 

1.15 0.0000 none  1.07 1.15 1.17 

1.25 0.0002 1.19  1.21 1.25 1.31 

1.35 0.0011 1.33  1.27 1.35 1.39 

1.45 0.0031 1.45  1.40 1.45 1.50 

1.55 0.0065 1.56  1.50 1.55 1.59 

1.65 0.0112 1.66  1.61 1.65 1.70 

1.75 0.0183 1.76  1.71 1.75 1.81 

1.85 0.0274 1.84  1.80 1.85 1.89 

 

913.0*29.2 4
1

 slopeDcalc



28 CEMA’16 conference, Athens, Greece 

Table 2 presents the value D that was used for the 
simulation, the slope that was calculated from this 
simulation and the Dcalc value, which was calcu-
lated using our model.  For D = 1.05 to D = 1.15, 
namely for almost smooth surfaces, the slope is 
almost zero and for these cases our model could 
not establish a clear Dcalc value. However for rough 
surfaces with D > 1.25, our proposed model proved 
to predict the fractal dimension D of the rough sur-
face with excellent accuracy (see Table 2).  

The accurate results of Table 2 gave us the motiva-
tion to stress the robustness of our method, by add-
ing random phases φn to the rough surface model-
ing function (1), for each surface simulation. The 
variability of slope calculations for each value of D 
in Figs. 7, 8 depicts this added surface random-
ness. Table 3 presents the prediction intervals for 
the Dcalc estimation. This interval indicates that for 
any new observation from a fractal surface, there 
exists 90% probability that the value of the fractal 
dimension of the surface lies within the prediction 
bounds of this Table 3. This Table demonstrates 
the fact that our proposed method is accurate and 
robust enough to characterize a rough fractal sur-
face from backscattered radar data, and also pro-
vides a bound estimation for the fractal dimension D 
of this surface. 

Note that if the angle of incidence is θi ≈ π/2 (i.e. 
EM wave incidence almost parallel to the rough 
surface, see Fig. 1), and since in this paper we are 
interested only for the backscatter case, i.e. θs= –θi, 
from (7) it follows that in this case z ≈ 0, and from 

(9) we see that our method is not applicable in this 
special case, since the scattering coefficient |γ(k)| 
can not be computed. Summarizing, our proposed 
method for characterizing a rough fractal surface 
provides reliable results for appropriate values of 
radar bandwidth, surface ‘patch size’ [19] and angle 
of incidence. 

Furthermore in this paper, and in order to examine 
whether our method could have a practical imple-
mentation in a noisy radar environment, we add 
AWGN noise in γ(k). We use eq. (10), below, for 
calculating the power level P(γ) of signal γ(k), and 
eq. (11) for calculating the noise level N(γ) for a 
given SNR value. 
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where m=1 to n  in the summation of eq. (10), 
above. The γnoisy in (12) represents a γ(k) signal 
that exhibits a certain SNR value using a Gaussian 
distribution with specific noise level. 

 

Fig. 8.  γ(k) with SNR 23db inserts a noise amplitude 3%  
of |γ(k)| max amplitude. 

From figure 8 it is obvious that a signal γ(k) exhibi-
ting high SNR=23db does not affect our proposed 
method. 

 

Fig. 9. γ(k) with SNR 12db inserts a noise amplitude 10% of 
|γ(k)| max amplitude. 

 

Fig. 10.  γ(k) with SNR 0db inserts a noise amplitude 36% of 
|γ(k)| max amplitude. 
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On the contrary a signal γ(k) exhibiting low 
SNR=0db (signal=noise), as demonstrated in figure 
10, can totally suppress sidelobes and cancel our 
proposed method, if no additional noise suppres-
sion technique is applied.  

Further to the above, there are several techniques 
that can be used to improve SNR and make our 
method useful for lower SNR values. Choosing the 
appropriate technique depends on what kind of 
noise interferes with the signal. In case of AWGN, it 
is possible to enhance the SNR by averaging 
measurements. Theory suggests that the noise 
goes down about as the square root of the number 
of averaged samples. Here we propose averaging 
over N successive bursts. 

In figure 11 we obtain the improvement of figure 9 
after an averaging of 25 samples (N=25 bursts). In 
figure 12 we obtain the improvement of figure 10 
after averaging of 100 samples. 

 

Fig. 11. γ(k) with SNR 12db after N=25 bursts averaging 

It is obvious that the number N of bursts that are 
needed for having a useful signal of γ(k) depends 
on the SNR value, namely noise level. The only 
trade-off is that when number of N is increased, it is 
possible the target (e.g. sea surface) to look as a 
‘different target’ during successive bursts. So the 
number of bursts is only limited by the rate of 
change of the target geometry. 

 

Fig. 12. γ-signal with SNR 0db after N=100 bursts averaging 

4. CONCLUSION  

In this paper, a novel method is presented for the 
characterization of rough fractal surfaces from 
backscattered radar data of sufficient bandwidth [9], 
[10]. As resulted from the plots of the backscattered 
signal magnitude as a function of the wavenumber 
(frequency, therefore a ‘spectral method’) of the 
incident EM wave, as the roughness of the fractal 
surface increases, then the observed slope be-
tween the main lobe and the side lobes also in-
creases. Moreover, the fractal dimension of the 
surface can be estimated by the average slope of 
backscattering coefficient |γ(k)|. Furthermore, the 
value of the available radar bandwidth is crucial and 
must be sufficiently large, for correct rough surface 
characterization. Finally, we prove that our method 
is useful even in a noisy radar environment which 
exhibits γ(k) with relatively low SNR. It is only a 
matter of selecting the appropriate averaging num-
ber of bursts in order to enhance SNR of signal 
γ(k).  
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