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Abstract 

The paper illustrates signal processing techniques used in the analysis of biomedical signals such as EMG, EEG and Heart Rate 
Variability, in the frequency domain. Normalization of the signals, FFT transform, windowing and quantitative variable calculations 
are demonstrated. Using modern programming languages new algorithm are developed for each part of the analysis. The result of 
this study is a synthesized toolset with algorithms and equations ready to be used in various biomedical signal frequency domain 
analisys. 

 
 

1. INTRODUCTION 

Frequency domain analysis is very important in the 
biomedical signal processing. With the rapid im-
provement of the processing power it is becoming 
much more usable in various signal analysis even 
in real time signal processing.  

In order to produce the expected results the signal 
transformations must be performed in very specific 
sequence and the transformations themselves must 
be performed accurately.  

The most common biomedical signal analysis to 
date are of the Heart Rate Variability (HRV) for 
calculating parameters describing the low frequency 
changes in the HR. This parameters are useful for 
predicting the risk of developing myocardial infarc-
tion and sudden cardiac death. Other area of Fre-
quency analysis is the EEG (Electroencephalo-
gram) where calculating the power spectrum of the 
signals correlate to the function of specific brain 
functions and are very important for the brain diag-
nostics. EMG is another area of use of the frequency 
domain analysis. The calculated spectrum density 
shows how much each frequency contribute to the 
muscle contraction, which can be very useful for 
neurological and muscle disorders. This type of 
analysis combined with time domain algorithms can 
improve significantly the reliability of an EMG driven 
active prosthesis. 

In the bottom of every frequency domain analysis 
lays the Discrete Furrier Trasnform (DFT) and its 
computational version Fast Furrier Transform (FFT). 

But you can’t just put a time series into an FFT and 
get a frequency domain data. There are many sig-
nal and algorithm specific procedures to make in 

order to have an accurate and predictable results. 
This includes: interpolation – not all biomedical time 
series are uniformly discretizated signals. Window-
ing: this is to minimize the effect of spectral spread 
due to the DFT expecting the input sequence to be 
periodic. Then we have the DFT itself in the form of 
FFT algorithm. Then we have to normalize the result 
of the FFT which is a complex vector, into a real 
value representing the frequency spectrum. And at 
last we may need to average the result of several 
transformations to reduce the variance error. 

All these transformations are described in the fol-
lowing sections. 
 

 
Fig. 1. HRV PSD Distribution 

 
Fig. 2. EEG Frequency mapping 
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2. INTERPOLATION OF THE SIGNAL 

Not all biomedical signals are uniformly sampled 
series. For example an RR interval time series is a 
series representing the intervals between two adja-
cent QRS complexes. In order to obtain a uniform 
sample frequency we need to resample or interpo-
late the time series.  
 

 

Fig. 3. Interpolation of the RR interval time series 

There are two main methods for interpolation used 
– Linear interpolation and Cubic spline interpolation. 
The first one is more straight-forward and is suitable 
for signals which are not with sinusoidal origin and 
the cubic spline interpolate more accurate the si-
nusoidal signals.  

Resampling is needed also when we need higher 
bandwidth analysis then the actual sampling fre-
quency in order to meet the Nyqust criteria. 
 
3. WINDOWING  

If we simply take a stretch of length N out of a time 
series containing a sinusoidal signal and perform a 
DFT, we will most likely _nd that the sinusoidal 
signal which we might naively expect to result in a 
sharp peak in only one frequency bin, will instead 
show up as something ugly like shown in Figure 4. 
The reason is that the DFT implicitly assumes that 
the signal is periodic, i.e. that the time series of 
length N repeats itself in_nitely in a cyclic manner. If 
the frequency of the sinusoidal input signal is not an 
exact multiple of the frequency resolution fres, i.e. 
does not fall in the exact center of a frequency bin, 
this assumption is not true, and the DFT will `see' a 
discontinuity between the last sample and the _rst 
sample due to the cyclic continuation. That discon-
tinuity spreads power all across the spectrum. 

The remedy is to multiply the time series with a 
‘window function' in the time domain before apply-
ing the DFT. This window function starts near or at 

zero, then increases to a maximum at the center of 
the time series and decreases again. Thus the dis-
continuity is removed. Many window functions have 
been defined and given names. They usually in-
volve some compromise between the width of the 
resulting peak in the frequency domain, the ampli-
tude accuracy and the rate of decrease of the spec-
tral leakage into other frequency bins. 

 

 

Fig. 4. Frequency response to a rectangular window 
 
For our purpose we are using the simple but useful 
Hanning window.  

A window function to be used with a DFT of length 
N is defined by a vector of real numbers {wj}, j = 0 
... N -1. It is used by multiplying the time series xj 
with the window before performing the DFT, i.e. 
using x1j = xj *wj as input to the DFT. 

The Hanning window is defined as follows: 
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We define the following two sums for normalization 
purposes: 
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We will use them in the normalization of the com-
plex result of the DFT.  

Because we will use S1 and S2 in the normalization 
of our final results, we can multiply the window val-
ues wj with any convenient constant factor. 
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4. FFT 

After we have calculated the windowed time se-
quence we are ready to compute the DFT with the 
FFT algorithm. We are using a Radix2 FFT in our 
study. 

We have developed a function  

Radix2(XREtmp, XIMtmp, Nf); 

It takes as parameters the data arrays for the real 
and imaginary part of the result and the length of 
the time series. 

The code of the Radix2 implementation is not shown 
here but it is a classic Radix2 algorithm shown in 
many articles around the internet. 
 
4. SCALING AND NORMALIZATION 

The normalized equivalent noise bandwidth NENBW 
of the window, expressed in frequency bins, is gi-
ven by 

NENBW ൌ ܰ
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	. 

The effective noise bandwidth ENBW is given by 
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where fs is the sampling frequency and fres the width 
of one frequency bin. For the Hanning window we 
have NENBW = 1:5 bins. This equivalent noise 
bandwidth is required when the resulting spectrum 
is to be expressed as spectral density (such as for 
noise measurements). It can be understood by con-
sidering white noise as input to our algorithm. Due 
to the width of the window in the frequency domain, 
each frequency bin collects not only the noise in 
that frequency bin, but also from adjacent bins. 
Dividing the result by the effective noise bandwidth 
corrects for this phenomenon. 

Now we come back to the problem of normalizing 
the results of the FFT. Assume we have an input 
time series xj of length N. After multiplication with 
the chosen window function, it is subjected to a 
real-to-complex FFT as defined in the previous sec-
tion. We will also need the window sums S1 and S2 
defined in section 3. 

The result of the FFT is a complex vector ym of 
length N = 2 + 1. We interpret it as a power spec-
trum, expressed as V2 rms, as follows: 

ܲܵ୰୫ୱሺ ௠݂ ൌ ݉. ୰݂ୣୱሻ ൌ
௠|ଶݕ|2
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The factor S1 takes the role of N. It takes into ac-
count both the length N of the DFT and the gain of 
the window function, plus any constant factor that 
was used in the computation of the window values 
wj. 

The factor 2 originates from the fact that we use an 
effcient FFT algorithm that does not compute the 
redundant results for negative frequencies. 

We now return to the scaling of the “normal” results. 
If the desired result is a power spectral density 
(PSD) expressed in V2/Hz, it is obtained by dividing 
the power spectrum (PS) by the effective noise-
equivalent bandwidth ENBW: 
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Since the ratio between the peak and the noise 
plateau in the FFT output depends on N, we need 
to distinguish carefully between spectra and spec-
tral densities. The magic number to convert them 
into each other is the effective noise bandwidth 
ENBW, which should hence always be recorded 
when a spectrum or spectral density is computed, 
such that the result can be converted to the other 
form at a later stage, when the information about 
the frequency resolution fres and the window that 
was used is normally not easily available any more. 

Further processing of the output is straightforward: 
If the desired result is a linear spectrum (expressed 
in V) or a linear spectral density (expressed in 
V/pHz), simply take the square root of the corre-
sponding power spectrum or spectral density: 

LSD ൌ √PSD	, 

LS ൌ √PS	. 

Finally the result can be converted into other units 
(such as Vpk or dB). 
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5. AVERAGING AND OVERLAP 

If we compute one estimate of a spectrum with the 
methods described so far (i.e. multiplying one seg-
ment of the time series with a suitable window func-
tion, performing a DFT and scaling the results), we 
will typically find the result to be rather `noisy'. The 
theory confirms this practical observation: The 
standard deviation of the spectrum estimate in one 
frequency bin is equal to the estimate itself, i.e. 
100%, if the signal in that bin is stochastic. It does 
not help the increase the length N of the DFT; that 
only reduces the width of one frequency bin without 
improving the variance. 

The usual remedy is to take the average of M esti-
mates and hence reduce the standard deviation of 
the averaged result by a factor of 1=√M. However, 
the properties of the signal must remain stationary 
during the averaging. Note that the averaging must 
be done with the power spectrum (PS) or the power 
spectral density (PSD), not with their square roots 
LS or LSD. If the square roots are desired as result, 
they must be computed at the end after the averag-
ing is finished. In conjunction with the use of win-
dow functions, this method of averaging several 
spectra is also known under names such as 
“Welch's method of averaging modified periodo-
gramms", “Welch's overlapped Segmented aver-
age" etc. 

If a long continuous data stream is simply split into 
several non-overlapping segments of length N and 
each segment is processed by a DFT with a win-
dow function, we have a situation as illustrated in 
Figure 5. 

 

Fig. 5. Segmented data stream with window  
and without overlap 

Due to the fact that the window function is typically 
very small or zero near its boundaries, a significant 
portion of the data stream is effectively ignored in 
the analysis. This is clearly not optimal in those 
situations where the data stream was produced at 
great expense, and maximal possible information is 
to be extracted from it. The situation can be im-

proved by letting the segments overlap, as illustra-
ted in Figure 6. 

 

 

Fig. 6. Segmented data stream with windows and overlap 

Figure 7 and Figure 8 shows the PSD calculated 
from a single and multible averaged data segments. 
The averaged result is much smoother.   

 

Fig. 7. Power spectrum density form a single data segment 
 

 

Fig. 8. Power spectrum density from  several  
averaged data segments 

6. CONCLUSIONS 

The transformation of the signals from the time 
domain to the frequency domain must be performed 
very carefully and all of the above procedures must 
be performed in order to produce accurate results. 
Further studied must be performed on the different 
windows that can be used with the DFT. Also we 
did not remove the constant component of the sig-
nal which will appear in the bin 0 in the transformed 
signal. 

Understanding the exact procedures for transform-
ing time series into frequency domain gives us in-
valuable instrument for analysis of biomedical sig-
nals and effectively develop new algorithms for all 
kind of biomedical devices. 
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