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Abstract 

In this paper, the integral expressions of the well-known ‘Sommerfeld Radiation Problem’, derived by our research group entirely in 
the spectral domain – as opposed to most classical formulations – are re-evaluated. Numerical integration has revealed various 
disadvantages regarding the accuracy as well as convergence times of existing formulas. This resulted in their limited practical valid-
ity, constrained in the low frequency regime. However, through a proper variable transformation it is possible to convert them into 
more compact formulas, which overcome the flaws of previous expressions. As a result, convergence times are significantly reduced 
and, even more important, the new expressions allow for the calculation of the total received EM field of a radiating dipole above flat 
lossy ground, at almost an arbitrarily chosen level of accuracy. Simulation results, presented herein, indicate the effectiveness and 
correctness of the proposed method, which can be easily implemented in a general – purpose computer code platform. 

 

 
1. INTRODUCTION 

The ‘Sommerfeld radiation problem’ is a well-known 
problem in the area of propagation of electromag-
netic (EM) waves above flat and lossy ground [1]. 
The original Sommerfeld solution to this problem is 
provided in the physical space by using the ‘Hertz 
potentials’ [1]. An equivalent solution to the problem 
is achieved by working in the spectral domain. In 
that perspective, in [2] the authors derived simple 1-
D integral expressions for the received EM field, 
which compared to the classical Sommerfeld formu-
lation, do not require taking the potential’s deriva-
tive, in order to calculate the received field. They 
also allow the application of asymptotic techniques, 
like the Stationary Phase Method [3], leading to 
well-known analytic formulas, applicable in the high 
frequency regime. 

However, accurately evaluating Sommerfeld inte-
grals is not a trivial task. Particularly, it is true that 
the integral expressions of [2] are generalized inte-
grals, extending from minus infinite to plus infinite 
and with the integrands presenting singularities, 
along the integration path. For that reason, the resi-
due theory, along with approximation techniques 

like the method of Saddle Points, is so widely used 
by most researchers in the literature in their attempt 
to evaluate Sommerfeld integrals [4], [5]. However, 
there is always an accuracy issue that arises when 
a pole point resides close to the path of integration 
and even evaluating those integrals purely numeri-
cally, required expensive commercial software [5].  

In this paper we show that using an appropriate 
variable transformation it is possible to convert the 
generalized integrals of [2] into fast converging 
formulas. Particularly, the integral expression de-
scribing the received EM field, is broken down into 
two parts, one easily computed definite integral and 
an integral of semi-infinite range. However, the 
integrand of this second generalized integral, be-
comes a fast decaying exponential function, result-
ing in very fast convergence times. 

Simulations and comparisons with known literature 
results [6] are given. Moreover, comparing the new 
results, with those obtained in [7], which refer to the 
evaluation of the original integral expressions of [2], 
without performing the variable transformation, 
introduced in this paper, indicate the accuracy and 
the effectiveness of the method. 
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2. PROBLEM GEOMETRY 

The problem geometry is shown in Fig. 1 and de-
scribed extensively in [1], [2], [4 – 7]. In summary, p 
represents the dipole moment of a radiating vertical 
Hertzian Dipole at frequency f, located at altitude x0, 
above infinite, flat and lossy ground, σ being its 
ground conductivity. Here (ε1,µ1), (ε2,µ2) represent 
the constitutive parameters of the air and ground 
respectively, with ε0=8,854x10-12F/m being the abso-
lute permittivity in vacuum or air.  

 

Figure 1. Geometry of the problem 

 
3.  DISADVANTAGES CONCERNING  

THE NUMERICAL INTEGRATION  
OF THE ORIGINAL SPECTRAL DOMAIN 
REPRESENTATION FOR THE RECEIVED  
EM FIELD 

In [2], [4] it is shown that the scattered electric field 
at the receiver’s position, above the ground level 
(x>0) can be expressed by: 
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In (2), (3) H0
(1) is the Hankel function of first kind 

and zero order and 01k , 02k  the wave numbers of 

propagation in the air and lossy ground respecti-
vely. 

Expressions (1) – (3) expose the following difficul-
ties when coming to numerically evaluate the re-
spective integral: 

- The range of integration extends from ∞−  
to ∞+ , resulting in potential errors for large 
evaluation arguments, despite the fact that 

the phase factor of (2), i.e. 
( )1 0 κi x xe +

gets ex-

ponential decaying with respect to ρk . 

- The Hankel function exhibits a singularity at 

ρ 0k =  and although it is proved that this sin-

gularity does not break the integral’s conver-
gence [7], it can affect the accuracy of the 
numerical integration results, when imple-
mented in the computer. 

- As seen from (2), ρ 01k k=  is another singu-

larity of the integrand and consequently a 
sufficient small range around it must be ex-
cluded when numerically evaluating (1). As 
mentioned in [7], doing so may severely af-
fect the accuracy of the results. 

 
4.  RE-FORMULATING THE INTEGRAL 

REPRESENTATION FOR THE EM FIELD 

Eq. (1) may be written as: 
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For I1, we perform the following variable transfor-

mation: ρ 01sinαk k= , which obviously maps the [

01 01,  k k− + ] range in the kρ domain to [-π/2 , π/2] 

of angle α. With this transform it also holds true: 

 2 2 2
1 01 2 02 01κ cosα, κ sin αk k k= = −  (6) 

Applying the above mentioned variable transform to 
(5a) and with the use of (2),(6), the expression for Ι1 
becomes: 
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Expression (7) may be further broken down into two 
integrals: 
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Finally, observing from (8) that ( ) ( )|| ||α αR R− =  

and using the properties of the Hankel function: 
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with J0 being the zero order Bessel function. 

For I2 and I3, a similar approach is followed. This 

time the variable transformations, ρ 01coshαk k=  

and ρ 01coshαk k= −  are used respectively, which 

both map the original ranges of integration in ρk , 

i.e. [ 01,  k + ∞ ] and [ 01, k−∞ − ] to [0, ∞+ ] of vari-

able α. Moreover, in both cases: 
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Consequently, applying a similar reasoning, as with 
I1 and also using (9), (10), it is easy to combine the 
results for I2 and I3 as following: 
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From (4), (11), (13), the expression for the scat-
tered electric field becomes : 
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5. COMPARISONS – NUMERICAL RESULTS 

The new integral form, given by (15), facilitates the 
numerical evaluation of the EM field, since it over-
comes the major drawbacks of expressions (1) – 
(3), outlined in section 3. Particularly: 

- The Hankel function, (1)
0H , is substituted by 

the zero order Bessel function, 0J ,which has 

no singularity, whatsoever.  

- The integrand has no singularity at ρ 01k k= , 

hence no need to exclude any range around 

01k is required. 

- The result is expressed as the sum of two in-
tegrals, one bound definite integral, ranging 
from [0, π/2] and an improper integral ex-
tending from [0, ∞+ ]. However, due to the 

presence of 
( )01 0 sinh ξk x xe− +

, the second in-
tegrand is a fast decaying function, practi-
cally making the integral a bound limits one 
that is fast converging and easily evaluated 
in the computer. 

The above justifications are validated by simulation 
results.  

The top graph of Fig. 2 depicts the numerical 
evaluation for the scattered electric field, using (15). 
It is compared (bottom graph) against the equiva-
lent results of [7], in which the computation was 
based on the original integral form, given by (1) – 
(3). In both cases, numerical integration (NI) data 
are represented by the solid lines of Fig. 2. The 
parameters for the simulation (i.e. transmitter – 
receiver heights, ground parameters, operating 
freq. etc) are given in the bottom plot of Fig. 2. 
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Figure 2.  Comparison of Numerical Integration results  
for the scattered field using : (i) redefined integral expressions  
(upper figure), (ii) earlier derived spectral integral expressions 

(lower figure) 

Along with the NI results, the high frequency ap-
proximation data, obtained after the application of 
the SPM method to the integral expressions for the 
Electric field [2], are shown as well (dashed lines). 
As mentioned in [7], SPM formulas are expected to 
be accurate in the far field, i.e. at least at distances 
over 10 – 15 wavelengths, or above 100 – 150m, 
for the 30MHz case and the problem parameters 
shown in Fig. 2. Therefore, using the SPM data as 
the baseline, it is obvious that only the numerical 
evaluation of (15) achieves the required accuracy. 
On the contrary, numerical computation of (1) – (3) 
fails to describe the electric field and this may be 
attributed to the reasons analyzed in Section 3 
above. 

In Fig. 3 (top graph), the components of the total 
received field, for a Low Frequency (LF) scenario, 
are shown. For the direct (LOS) field and the Space 
Wave, analytic formulas exist, as used in [7]. The 
scattered field was numerically computed via (15). 

Due to the small antenna heights and the long dis-
tances involved (~10km), the space wave is ex-
pected to diminish [3]. As a result, the link is estab-
lished primarily by means of the Surface Wave, 
which is defined as the remaining field, after sub-
tracting the space wave from the total field [5]. This 
is actually verified in Fig. 3, with the Total Field 

curve being very close to the Surface Wave results. 
As a confirmation of the validity of the results, our 
Surface Wave calculations are compared with the 
respective Norton formulas [6]. The respective 
curves are almost identical! 

 

 

Figure 3.  Numerical evaluation of the EM field  
at the ‘low Frequency regime’ 

The bottom half of Fig. 3 displays the behavior of 
the integrand, gex(α) (actually the real part of the x-
directed component), of the second integral expres-
sion of (15). It is evident that this integrand is con-
fined in a small window of the integration variable α, 
outside of which and especially for large values of 
α, it actually becomes equal to zero. This is attrib-
uted to the behavior of the exponential function of 

the integrand, 
( )01 0 sinhαk x xe− +

. Due to the presence 
of the sinh function in the exponent, it is a vastly 
decreasing factor, making the whole integrand al-
most zero for even modest values of α. The bottom 
line is that the generalized integral of (15) becomes 
a practically bound limits one, easily and quickly 
evaluated in the computer. 

The oscillations in gex(α) originate from the behavior 

of the Bessel function 0J . Its effects on the inte-

grand are visible by comparing the two bottom 
graphs of Fig. 3. Due to these oscillations, most of 
the effect of gex(α) is cancelled, which is why the 
relative large values of gex(α) (~104) are not re-
flected in the final field values (~10-5) 
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The simulation of Fig. 3 is now repeated at Fig. 4 
for a high frequency scenario in the VHF/UHF band. 
Again, the source and observation points are lo-
cated close to the ground level and the electric field 
values at various distant observation points are 
calculated. 

As shown in Fig. 4, in this case the observed Sur-
face Wave is negligible, a result also predicted by 
Norton [6]. Consequently, the Space Wave almost 
completely describes the total received field and 
hence the SPM method, an asymptotic method that 
converges to the space wave formulas [2], [7], is 
validated in this high frequency case, despite the 
small grazing angle (angle φ of Fig. 1) of the sce-
nario [7].  Finally, notice in the bottom graph of Fig. 
4 how quickly, gex(α) vanishes, making thus the 
convergence of (15) very fast. 

 

 

Figure 4.  Numerical evaluation of the EM field  
at the VHF/UHF band (‘high frequency regime’) 

As a final validation, the field values (this time for 
the magnetic field) for the scenario of Fig. 2 (i.e. 
frequency f=30 MHz) are shown in Fig. 5. Again, it 
seems there is a very good match between our 
calculations with the respective Norton’s results [6]. 

 

Figure 5.  Magnetic field components at the frequency  
of 30MHz 

 
6. CONCLUSION 

In this paper we continue our previous research 
work on the solution of the ‘Sommerfeld radiation 
problem’ in the spectral domain. Using an appro-
priate variable transformation, it is shown that the 
disadvantages of the previous integral expressions 
for the EM field are effectively addressed. The EM 
field is now expressed as an integral formula, which 
is easy and fast to evaluate in the computer, using 
a general purpose computer code suite, as oppo-
sed to commercially specialized software, used in 
the literature [5]. 

Details about the algorithm, used and the specifics 
of the implementation code will be given in the ac-
companying Journal paper, currently prepared by 
our research team. For the time it is enough to say 
that the results, presented herein, were obtained 
with a required relative accuracy level of 10-3, al-
though in most of the cases the achieved, esti-
mated accuracy was less than 10-5 (meaning that 
the algorithm might accept further improvements for 
even faster computation times).  With this setting, 
only a few seconds or even parts of a second (de-
pending on the case) were just enough to estimate 
the EM field, at each reception point (horizontal 
distance from the source). Higher accuracy levels 
are addressable by the algorithm (e.g. the algorithm 
was run with a 10-10 setting) requiring, however, 
larger convergence times. Nevertheless, from a 
visualization perspective, the captured graphs dif-
fered imperceptibly from the ones shown here. 
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