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Abstract 

The Method of Auxiliary Sources (MAS) is applied to Transverse Magnetic (TM) plane wave scattering from infinite, dielectric, non-
smooth cylinders. The geometry of the scatterer is assumed to include curved wedges, defined as intersections of circular arcs, for 
the first time in literature. The auxiliary surface is shaped in various patterns, to study the effect of its form on the MAS accuracy. In 
addition to the standard, conformal shape, several deformations are tested, where the auxiliary sources are allowed to approach the 
tip of the wedge. It is demonstrated that such a procedure leads to significant improvement of the numerical results accuracy. Com-
parisons of schemes are presented, and the optimal auxiliary source location is proposed. 
 

 
1. INTRODUCTION 

The Method of Auxiliary Sources (MAS) [1] is a 
numerical technique that has successfully been in-
voked in computational electromagnetics, in a wide 
range of radiation and scattering phenomena [2]. 
MAS is somewhat similar to the Point Matching 
version of the Method of Moments (MoM), however 
the auxiliary current sources are not located on the 
surface boundaries, but inside the radiator/scatte-
rer. The method has been shown to be mathemati-
cally rigorous, since the basis functions set used in 
the field expansions has been proven to be com-
plete [3], which is not always easy to prove in MoM. 
Moreover, unlike MoM, MAS does not face singular-
ity problems, it avoids time-consuming numerical in-
tegration at every stage of the solution, and its algo-
rithmic implementation is much more straightfor-
ward. 

Although MAS has been utilized in several prob-
lems with various geometries and materials, further 
research is necessary to determine the optimal 
source location for arbitrary configurations. Particu-
lar complications arise when the outer boundary of 
the scatterer contains wedges, i.e. when the analyt-
ical expression of the boundary is not differentiable. 
In that case, it has been observed that the solution 
accuracy is depleted, because the boundary condi-
tion close to the wedge tip is hard to satisfy ade-

quately. To apply MAS to such configurations, a set 
of auxiliary sources (AS’s) is situated on a fictitious 
surface, which is generally conformal to the actual 
boundary, except in the neighborhood of the tips. In 
the areas surrounding the wedges, the AS’s are 
densely packed and located very close to the tips, 
to account for the edge effects, as suggested in [4]. 
Similar strategies were employed in the case of a 
scattering problem associated with coated Perfectly 
Electric Conducting (PEC) surfaces including 
wedges [5], where the surface was modeled via the 
Standard Impedance Boundary Condition (SIBC) 
[6]. 

Although this deformation of the auxiliary surface 
has proven efficient for straight wedges, in particu-
lar forming right angles, no evidence is known from 
the literature about its applicability to arbitrarily 
shaped wedges. The aim of this paper is to investi-
gate whether MAS accuracy is enhanced through 
this deformation, when the wedge is shaped as an 
intersection of circular arcs with non-coincident cen-
ters. The scatterer is thus defined as a dielectric, in-
finite cylinder, with eye-shaped cross-section. The 
auxiliary surface is generally maintained as con-
formal to the scattered boundary, except in the 
neighborhood of the wedge tips, where various de-
formation schemes are employed, and accuracy 
comparisons are drawn. 
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The format of the paper is as follows: Section 2 
quickly recapitulates the mathematical formulation 
of MAS for dielectric scatterers, illuminated by a 
transverse magnetic (TM) polarized plane wave. 
Section 3 proposes several algorithms for the d
formation of the auxiliary surfaces close to the 
wedge tips. Section 4 includes several numerical 
results for the eye-shaped scatterer and checks the 
satisfaction of the boundary condition
tion 5 summarizes the method and draws useful 
conclusions. 

A ���� behavior is assumed and suppressed 
throughout the paper. 

 
2.  MAS FOR EYE-SHAPED DIELECTRIC 

SCATTERERS 

We assume a dielectric, infinitely long cylinder with 
cross section that resembles an eye (Fig. 1a).
dielectric is assumed to be linear, homogeneous 
and isotropic. The geometry of the scatterer, depic
ted in blue, comprises two circular arcs with ident

cal radii equal to �, but with different centers. In 
particular, the Cartesian coordinates of the 
arc are given by 

�� � �	
��, �� � ����
whereas those of the lower arc are given by

�� � �	
��, �� � ����
where � is the azimuth angle and �
displacement of each arc center, taken equal to the 

arc apothem (see Fig. 1b). Obviously, 
range in the entire �0,2�� interval, but is limited by 

the arc width itself, given by ����
The scatterer is illuminated by a TM

impinging from azimuth angle equal to
fore the incident electric field ����  is given by

				������, �� �  !exp	%�&!��	
�
				�������	''''                                     

where  ! is the amplitude of the incident electric 
field and &! is the free space wavenumber. The 
incident magnetic field (���  is given by

(�����, �� � ) *+
,+
�sin����01 )

exp%�&!��	
����� � ����

where 2! is the free space intrinsic 
solve the scattering problem via MAS
AS’s are defined, each one of multitude

The format of the paper is as follows: Section 2 
quickly recapitulates the mathematical formulation 
of MAS for dielectric scatterers, illuminated by a 
transverse magnetic (TM) polarized plane wave. 

proposes several algorithms for the de-
formation of the auxiliary surfaces close to the 
wedge tips. Section 4 includes several numerical 

shaped scatterer and checks the 
satisfaction of the boundary condition. Finally, sec-

s the method and draws useful 

behavior is assumed and suppressed 

SHAPED DIELECTRIC 

We assume a dielectric, infinitely long cylinder with 
cross section that resembles an eye (Fig. 1a). The 
dielectric is assumed to be linear, homogeneous 
and isotropic. The geometry of the scatterer, depic-
ted in blue, comprises two circular arcs with identi-

but with different centers. In 
particular, the Cartesian coordinates of the upper 

����� ) 3			     (1) 

whereas those of the lower arc are given by 

����� � 3			     (2) 

�3 is the vertical 
displacement of each arc center, taken equal to the 

Obviously, � does not 
but is limited by 

��� � 2arccos 89. 

TM plane wave 

impinging from azimuth angle equal to ����. There-
is given by 

��	
����� �
                                            (3) 

is the amplitude of the incident electric 
is the free space wavenumber. The 

is given by 
 

1 )cos����:1�					   
���������;							 (4) 

 impedance. To 
solve the scattering problem via MAS, two sets of 

each one of multitude	<, as 

shown in Fig. 1a. In standard MAS formulation both 
inner and outer auxiliary surfaces are conformal to 
the scatterer boundary. The electric field due to the 

�th inner AS, located at point 
the outer space is 

 =��>� � '? �@!�A

where  � is the corresponding unknown weight,

(� � 1,2, … ,<), and @!�A
of zero order and second kind
magnetic field of the �th auxiliary source is 
ly proportional to the curl of (5), given explicitly in 
[5]. Similar expressions hold for the outer AS’s, 
radiating in the inner space of the scatterer, 

for &! and 2!, which have to be replaced by 
2 respectively, corresponding to the scatt
dielectric properties. The total scattered 
expressed as superposition of 

the @ field accordingly. By applying the boundary 
conditions for both fields at 

(CP’s) ��D, �D� (E � 1,2
boundary (blue dots in Fig. 1a), we cast a linear 
system of equations 

�FG%H;

where %H; is the column vector of the unknown 
weights  �, �FG is a square matrix 
2< with elements determined by the interacti

between AS’s and CP’s and
tor of the incident   and @
CP’s. 

Fig. 1. a)  Geometry of the scatterer
auxiliary sources (AS’s) (red) and outer auxiliary sources 

(AS’s) (magenta). Blue dots stand for collocation points (CP’s) 
and blue circles for midpoints (MP’s).
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shown in Fig. 1a. In standard MAS formulation both 
inner and outer auxiliary surfaces are conformal to 
the scatterer boundary. The electric field due to the 

inner AS, located at point >� and radiating in 

? !
�A��&!|> ) >�|�			     (5) 

is the corresponding unknown weight, 
�A�

 is the Hankel function 

and second kind. The corresponding 
auxiliary source is obvious-

ly proportional to the curl of (5), given explicitly in 
Similar expressions hold for the outer AS’s, 

radiating in the inner space of the scatterer, except 

, which have to be replaced by & and 
respectively, corresponding to the scatterer’s 

The total scattered   field is 
expressed as superposition of the fields in (5) and 

By applying the boundary 
conditions for both fields at < collocation points 

2,… , <) of the scattering 
boundary (blue dots in Fig. 1a), we cast a linear 

G% ; � %J;                  (6) 

is the column vector of the unknown 
is a square matrix of size 2< K

with elements determined by the interaction 

between AS’s and CP’s and %J; is the column vec-
@ fields calculated at the 

 

Geometry of the scatterer (in blue) including inner 
auxiliary sources (AS’s) (red) and outer auxiliary sources 

(AS’s) (magenta). Blue dots stand for collocation points (CP’s) 
and blue circles for midpoints (MP’s). 
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Fig. 1. b) Construction of the geometry.

 

3.  IMPROVEMENT OF THE AUXILIARY 
SURFACE LAYOUT 

As mentioned in [4],[5], MAS becomes less acc
rate when the auxiliary surfaces are conformal to 
boundaries including wedges. Specifically, satisfa
tion of the boundary condition at midpoints (MP’s) 
(see Fig. 1a) close to the tips is no longer adequate. 
To overcome this complication, the auxiliary surface 
may be deformed so that AS’s not only approach 
the tips closely, but become denser in the tip neig
borhood as well. AS’s may approach CP
several patterns. In this work, two basic patterns 

were tested. Let L be the number of AS’s to be 
moved. Let �D be the polar radius of the 
(E � 1,2, … ,L), let M be the maximum polar 
radius distance between the Eth AS and the 
CP. Finally, let � be the proximity factor, defined in 

�0,1G, so that 0 corresponds to no approach and 
corresponds to maximum approach (resulting in 
coincident AS’s and CP’s). Then, the schemes
posed for the auxiliary surface deformation are
defined as follows: 

�′D � �D � M� ODPQ

where R � 1 for simple and R � 2 
reach. The deformation effect is graphically d
scribed in Figs. 2,3. 

Furthermore, as proposed in [5], AS’s, and CP’s 
accordingly, should become denser close to the 
wedge tip. Again, there is no unique way to acco
plish this. In this work, the scheme implemented 
multiplies the polar angle �D of the E
by a factor	SD, 0 T S=U��U V S
S=U��U is user-defined. For example, in the first 
quadrant of the ‘eye’, SD is defined to be close to 

 

 
Construction of the geometry. 

AUXILIARY 

As mentioned in [4],[5], MAS becomes less accu-
rate when the auxiliary surfaces are conformal to 
boundaries including wedges. Specifically, satisfac-
tion of the boundary condition at midpoints (MP’s) 

s no longer adequate. 
To overcome this complication, the auxiliary surface 
may be deformed so that AS’s not only approach 
the tips closely, but become denser in the tip neigh-
borhood as well. AS’s may approach CP’s following 
several patterns. In this work, two basic patterns 

be the number of AS’s to be 
be the polar radius of the Eth AS 

be the maximum polar 
AS and the Eth 

be the proximity factor, defined in 

corresponds to no approach and 1 
corresponds to maximum approach (resulting in 

Then, the schemes pro-
uxiliary surface deformation are 

O Q
W
						          (7) 

 for progressive 
The deformation effect is graphically de-

proposed in [5], AS’s, and CP’s 
accordingly, should become denser close to the 
wedge tip. Again, there is no unique way to accom-
plish this. In this work, the scheme implemented 

Eth AS location 
SD V 1, where 

For example, in the first 
defined to be close to 0 

for AS’s near the wedge tip, and close to 
close to the vertical axis. For progressive densific

tion, the scheme proposed is: 
Moreover, additional AS’s may be superimposed to 
the already existing ones close to the tips, if nece
sary (see Fig. 4) 

Fig. 2.  Polar radius increase from 1 to 1.5 according 
to the proposed schemes

Fig. 3.  Deformation of the auxiliary surface: all inner AS’s are 
allowed to approach the CP’s, whereas only 1/8 of the outer 

AS’s are allowed to do so

Fig. 4. Combination of tip approach and densification 
of the AS’s
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for AS’s near the wedge tip, and close to 1 for AS’s 
close to the vertical axis. For progressive densifica-

eme proposed is: �′D � �DSDA . 
Moreover, additional AS’s may be superimposed to 

existing ones close to the tips, if neces-

 
Polar radius increase from 1 to 1.5 according  

to the proposed schemes 

 

Deformation of the auxiliary surface: all inner AS’s are 
allowed to approach the CP’s, whereas only 1/8 of the outer 

AS’s are allowed to do so 

 

Combination of tip approach and densification  
of the AS’s 
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4. NUMERICAL RESULTS 

To test the efficiency of the method, a scatterer is 

defined by radius � � 3Y, arc displacement 
3 � 1.5Y, dielectric relative permittivity 

incidence angle ���� � 0, and originally 
CP’s, hence 160 inner and 160 outer AS’s. Sol
tion of the problem without any deformat
the results of Fig. 5. The upper left subplot depicts 
the quantified error in the boundary condition (BC)
of the   field along the boundary stretch

]^_� �
|1̀ K ���� ) �a�U�|

 !
		

 

where 1̀ is the normal unit vector on the boundary, 

pointing outwards, and  ���, �a�U 
fields just inside and just outside the scatterer r
spectively. Similarly, the upper right 
the quantified error for the @ field, and the lower 
plot illustrates the bistatic Radar Cross Section
(RCS) in terms of the polar angle. It is obvious that 
the BC error is relatively significant in the immediate 
vicinity of the wedge tips.  

Fig. 5. Results for standard, conformal 
auxiliary surfaces 

To improve satisfaction of the BC, the deformation 
scheme proposed above was implemented. After 
several trials, the following parameters were 
invoked: The portion of AS’s to be displaced was 

1/5 for the inner and 1/8 for the outer ones. The 
proximity factor was set equal to �
inner and � � 0.65 for the outer AS’s

S=U��U � 0.80. No extra AS’s were added, since 
their presence proved to be unimportant

y of the method, a scatterer is 

, arc displacement 
, dielectric relative permittivity d� � 2.56, 

, and originally < � 160 
outer AS’s. Solu-

of the problem without any deformation yields 
ft subplot depicts 

error in the boundary condition (BC) 
along the boundary stretch, i.e.  

� 													�8� 

is the normal unit vector on the boundary, 

 are the electric 
outside the scatterer re-

 subplot depicts 
field, and the lower 

the bistatic Radar Cross Section 
It is obvious that 

the BC error is relatively significant in the immediate 

 

Results for standard, conformal  

To improve satisfaction of the BC, the deformation 
scheme proposed above was implemented. After 
several trials, the following parameters were finally 

: The portion of AS’s to be displaced was 

for the outer ones. The 
� 0.75 for the 

for the outer AS’s, while 

. No extra AS’s were added, since 
unimportant. 

The results are shown in Fig. 6

field error at MP’s was reduced from 

to 3.71 ∗ 10gh and the maximum 

from 2.8 ∗ 10gi to 	1.95
RCS pattern is only slightly affected, more pronoun
ced improvement is expected for larger scatterers.   

 

Fig. 6. Results for improved, non
auxiliary surfaces

5. CONCLUSION 

The Method of Auxiliary Sources (MAS) was a
plied to scattering from a dielect
curved wedges. Since the BC error close to the 
wedge tips is significant for standard, 
auxiliary surfaces, deformation of the latter w
proposed. In the vicinity of the tips, both inner and 
outer AS’s approached the CP’s, and their distrib
tion was also allowed to become denser. The BC 
error was proven to decrease significantly fo

the   and the @ field, yielding more accurate RCS 
results. 
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