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Abstract 

In this paper a novel scheme is presented for objects tracking in urban environment from a video, represented as three-way tensor. 
The low rank recovery (LRR) method is applied in 4 of its variations – the Robust Orthogonal Subspace Learning (ROSL), the Fast 
Linearized Alternating Direction Method with Adaptive Penalty (FastLADMAP), the Inexact Augmented Lagrange Multiplier (IALM), 
and the Linearized ADM with Adaptive Penalty (LADMAP). Two fusion functions are proposed for combining binary segmented frames 
from the top two performing decompositions – LRR FastLADMAP and ROSL, to get higher detection rate for foreground objects. The 
proposed approach is considered applicable in fields like video surveillance, production automation, public entertainment, etc. 
 

 
1. INTRODUCTION 

Moving objects detection on a frame-by-frame basis 
in video plays important role in numerous applica-
tions, such as video surveillance, vehicle traffic con-
trol, industrial production, logistics and many others. 
Detecting the boundaries of foreground objects over 
a complex background as accurately as possible 
over time is the first step towards further efficient 
analysis of the scene. Many methods rely on repre-
senting the input video as three-way tensor, which is 
being further decomposed under various schemes to 
sparse and low-rank components, which further 
analysis lead, in some of the applications, to detec-
tion of the moving objects – a hard task, when the 
background is complex. 

In [1] Shijila B. et al. use low rank approximation as 
a mean for denoising and in parallel to it, moving ob-
jects detection in videos. They apply the l1-Total Var-
iation (TV) regularization approach and try to consol-
idate it with the nuclear norm, and the l2-norm in a 
single framework. F1-measure of the detection pro-
cess has been reported to vary between 0.98 and 
0.99 over videos with Gaussian noise. The same au-
thors had proposed another technique, using 
TVRPCA with a convex optimization, where the con-
vergence of the resulting algorithm is being tried [2]. 
Reduced computational complexity is reported, com-
pared to TVRPCA, DECOLOR and other algorithms, 
while the F1-measure changes between 0.52 and 
0.90 among 6 test videos, comprising of various ele-
ments, including camera jitter, shadows, dynamic 
background, etc. 

Yang et al. [3], following the basic idea of approxima-
tion based on rank functions and sparse conditions, 
try to find different mean than the nuclear norm. The 
authors propose nonconvex function, using General-
ized Singular Value Thresholding (GSVT) and Alter-
nating Direction Method of Multipliers (ADMM). The 
proposed approach appears effective in noise sup-
pression, leading to Peak Signal to Noise Ratio 
(PSNR) of filtered frames between 35.2 and 39.4 dB. 
The F-measure of the object detection process 
changes between 0.3969 and 0.9153 for a set of 7 
test videos, which proves its general applicability.  

Matrix recovery with a low rank and using weights 
through a spectral graph is the approach, developed 
by Chen et al. [4], to detect salient objects. Both the 
low-rank and sparse matrices are employed in the 
process. The average F-measure deviates between 
0.5678 and 0.8437 from testing with 4 datasets. 

Sobral, in his thesis [5], looks towards both the matrix 
and tensor decomposition to low-rank and sparse 
components for object detection in video and other 
applications. Double-constrained version of the 
RPCA algorithm is developed for enhanced fore-
ground detection. Spatial saliency maps ease the 
process in the case of dynamic scenes. Additionally, 
two decomposition algorithms, based on tensor rep-
resentation and incrementally organized help to sep-
arate better the foreground from the background in 
multidimensional data. The F-measure reaches 
85.96% for a RGB test sequence and 95.17% for a 
multispectral one for one of the implementations, fol-
lowing this approach. 
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Wang and Huang [6] use the l2,1-norm minimization, 
while performing the low-rank approximation. The 
approach is applied over a set of multi-scale fea-
tures, incorporating color, shape, texture, and other 
descriptors. All three parameters – Precision, Recall 
and F-measure reach values close to 0.9 during ex-
perimentation with MSRA10K dataset. More re-
cently, Yang et al. [7] propose matrix recovery, 
based on spatiotemporal representation, in which 
approach the scalability is one of the imposed prop-
erties. The movement of objects in the video is de-
tected by the optical flow algorithm and further the 
background is eliminated by low-rank regularization 
with consequent affine transform for suppressing its 
slight variation (motion) over time. PSNR in back-
ground recovery reaches 40 dB and SSIM – 0.9939 
in some instances. The average F-measure in de-
tecting foreground objects is 0.87, higher than nu-
merous other decomposition methods. Low-rank 
tensor representation of videos is employed in their 
decomposition along with fused-sparse representa-
tion of salient type [8]. Three-way tensors assure 
preservation of the spatial and time relations among 
objects on a continuous basis over time. Three-di-
mensional local adaptive regression kernel (3D-
LARK) redounds for finding the movement saliency 
on both the space and time independent coordinates 
in relation to the foreground. Salient objects are also 
being detected with a weighted matrix recovery pro-
cess, where the table arrangement of data has a low 
rank [9]. Color, mutual location, and contour connec-
tivity are some of the properties embedded in that 
representation to find the regions, classified as part 
of the background. Positive results are reported after 
comparing the algorithm efficiency with other 24 im-
plementations in the practice. Structured sparse out-
liers [10] are another view over the moving objects in 
video, which is employed in the low-rank and sparse 
decompositions. Shkeri and Zhang propose with ad-
dition to that view the prior map, which assists in the 
reduction of the negative effect of significant illumi-
nation changes in the scene. F-measure of the back-
ground subtraction from testing with popular da-
tasets reaches 0.8033 in some instances. 

In this study the main aim is to evaluate the Low 
Rank Recovery (LRR) method in 4 of its base imple-
mentations - the Robust Orthogonal Subspace 
Learning (ROSL), the Fast Linearized Alternating Di-
rection Method with Adaptive Penalty (FastLADMAP), 
the Inexact Augmented Lagrange Multiplier (IALM), 
and the Linearized ADM with Adaptive Penalty 
(LADMAP) over a popular video test set. Based on 

the obtained results two new fusion schemes are 
proposed and tested, which yield higher Detection 
Rate in one instance and higher Precision in the 
other. In Section 2 of the paper, the description of the 
algorithms is given, followed by experimental results 
in Section 3 and discussion in Section 4. Section 5 
contains the conclusion. 

2. ALGORITHMS DESCRIPTION 

2.1. LRR IALM 

In the base of the LRR IALM algorithm lays the ma-
trix completion task. It has been proven that for a ma-
trix A of rank r (typically a low one), having some 
missing elements, the following optimization proce-
dure may lead to its restoration [11]: 

 min
𝐴

‖𝐴‖∗, 𝑔𝑖𝑣𝑒𝑛 𝐴𝑖𝑗 = 𝐷𝑖𝑗 , ∀(𝑖, 𝑗)𝜖𝛺, (1) 

where Ω is the entity of samples’ indices, D – an input 
matrix of real noisy elements, mxn in number. The 
exact Augmented Lagrange Multiplier (ALM) method  
could be applied in this case, following [11]: 

 min
𝐴

‖𝐴‖∗,    𝑔𝑖𝑣𝑒𝑛 𝐴 + 𝐸 = 𝐷,

𝜋Ω(𝐸) = 0,
        (2) 

where πΩ is a transformation that puts all elements, 
falling outside Ω to be 0; E – matrix of the additive 
errors. The partial augmented Lagrangian function 
with the multiplier Y in it, then, could be found from 
[11]: 

𝐿(𝐴, 𝐸, 𝑌, 𝜇) = ‖𝐴‖∗ + 〈𝑌, 𝐷 − 𝐴 − 𝐸〉 +
    𝜇

2
‖𝐷 − 𝐴 − 𝐸‖𝐹

2 ,  (3) 

where μ > 0 is a scalar, and F denotes the Frobenius 

norm. Depending on the constraints imposed over 
the values of πΩ(E), the IALM algorithm takes its 
form. 

2.2. LRR LADMAP 

The linearized ADM could be expressed as [12]: 

 𝒙𝑘+1 = 𝑎𝑟𝑔min
𝒙

𝑓(𝒙) +
𝛽

2
‖𝓐(𝒙) + 𝓑(𝒚𝑘) −

𝒄 + 𝜆𝑘/𝛽‖2, (4) 

where x (typically, the noisy input), y and c are ma-
trices (could be also vectors, which is not of interest 
to this study, since processing is done over video 
frames), f – a convex function, λ – Lagrange multi-

plier, β – penalty parameter, k – the number of the 
current iteration, and 𝓐 and 𝓑 – linear transfor-
mations. Equation (4) could be approximated as [12]: 
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𝒙𝑘+1 = argmin
𝒙

𝑓(𝒙) +
𝛽𝜂𝐴

2
‖𝒙 − 𝒙𝑘 +

𝓐∗(𝜆𝑘 + 𝛽(𝓐(𝒙𝑘) + 𝓑(𝒚𝑘) − 𝒄))/

 (𝛽𝜂𝐴) ‖
2
,  (5) 

where 𝓐∗ is the adjoint of 𝓐, ηA – scaling parame-

ter with positive value. The adaptive penalty could be 
found by updating process, according to [12]: 

 𝛽𝑘+1 = min (𝛽𝑚𝑎𝑥, 𝜌𝛽𝑘) (6) 

with 𝜌 – a scalar, greater or equal to 1, found sepa-
rately. 

2.3. LRR FastLADMAP 

The LRR solution to the problem, posed in Section 
2.2, could be found approximately following the cri-
terion [12]: 

min
𝒁,𝑬

𝛽(‖𝒁‖∗ + 𝜇‖𝑬‖2,1) +
1

2
‖𝑿 − 𝑿𝑹 −

𝑬‖2,  (7) 

where β is relaxation parameter with a non-negative 
value, Z – coefficient matrix, R – an additional matrix. 
Gradual decrease of β could be achieved by [12]: 

 𝛽𝑘+1 = max (𝛽𝑚𝑖𝑛, 𝜃𝛽𝑘), (8) 

where θ is a constant. 

2.4. LRR ROSL 

Following the general case of RPCA recovering of a 
low-rank matrix A, given input matrix X with noise 
[13]: 

min
𝐴,𝐸

‖𝐴‖∗ + 𝜆‖𝐸‖1, 𝑔𝑖𝑣𝑒𝑛 𝐴 + 𝐸 = 𝑋, (9) 

where ||.||* is the nuclear norm and ||.||1 – the l1-norm. 
It has been proven that [13]: 

‖𝐴‖∗ = min
𝐷,𝛼

1

2
(‖𝐷‖𝐹

2 + ‖𝛼‖𝐹
2 ) , 𝑔𝑖𝑣𝑒𝑛 𝐴 = 𝐷𝛼, 

  (10) 

‖𝐴‖∗ = ‖𝛼‖𝑟𝑜𝑤−1, 𝑔𝑖𝑣𝑒𝑛 𝐴 = 𝐷𝛼, 𝐷𝑇𝐷 =
 𝐼𝑘,  (11) 

where D is a spanning matrix of the ordinary or-
thonormal space the data is being present, α – vector 
of coefficients, revealing the influence degree of the 
components of D, and I – the identity matrix. From 
(10) and (11) it has been shown that the low-rank re-
covery by the ROSL algorithm could be accom-
plished by solving [13]: 

min
𝐸,𝐷,𝛼

‖𝛼‖𝑟𝑜𝑤−1 + 𝜆‖𝐸‖1, 𝑔𝑖𝑣𝑒𝑛 𝐷𝛼 + 𝐸 =

𝑋, 𝐷𝑇𝐷 = 𝐼𝑘, ∀𝑖.  (12) 

2.5. Fusion OR and AND 

In order to get higher Detection Rate over the pixels 
of moving objects the logical operation OR is per-
formed between the binary frames, obtained from the 
LRR decomposition algorithms. The result is another 
binary frame. For the purposes of getting higher Pre-
cision, the logical operation AND is performed in 
analogous way. It is expected to have, in this second 
case, finer detection of the boundaries of moving ob-
jects, which are more contrast to the background 
with less False Positives. 

3. EXPERIMENTAL RESULTS 

The hardware platform, used for testing, consists of 
64-bit Intel Core i5 processor with 4 cores, working 
on a base frequency of 3.1 GHz, along with 12 GB of 
RAM and 2 TB 7200 rpm HDD. It is controlled by Ub-
untu 14.04 LTS operating system, and all tests are 
implemented in the Matlab R2016a simulation envi-
ronment. All decompositions are based on imple-
mentations from the LRS Library v. 1.0.10 [14]. The 
video dataset contains 6 24-bit color videos, cap-
tured in urban environment (in- and outdoor with at 
least 1 person or a vehicle moving over complex 
background), some of which with changing illumina-
tion conditions (Table 1). They are derived from the 
LASIESTA database [15], in which every video has 
its groundtruth correspondent (binary) video. 

Table 1.  Video dataset for testing 

Video 
Width, 

px 
Height, 

px 
FPS Frames 

I_IL_01 352 288 10 300 

O_CL_01 352 288 10 250 

I_OC_02 352 288 10 300 

I_SI_01 352 288 10 220 

O_RA_02 352 288 10 370 

O_SU_02 352 288 10 400 

The following parameters are measured on a pixel 
basis along all frames from a video: 

 DR = TP/(TP+FN), (13) 

 Precision=TP/(TP+FP), (14) 

 F = 2DR.Precision/(DR+Precision),     (15) 

where TP is the True Positive value, expressing the 
count of pixels correctly discovered as part of a mov-
ing object, FN – False Negatives – the count of pix-
els, belonging to moving objects, but marked as part 
of the background, and FP – False Positives – all 
pixels, labeled as part of moving objects, but being 
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part of the background. Processing time (PT) of just 
applying the decomposition and Full time (FT), in-
cluding input-output operations, are also measured. 
They are shown in Fig. 1 and the average DT, Preci-
sion and F measure – in Fig. 2. 

 
Fig. 1. Processing and Full times  
of the decomposition schemes 

 

Fig. 2. Detection Rate, Precision and F measure  
of tested algorithms 

The deviations of the same, accuracy defining pa-
rameters, are visible in Fig. 3. 

Sample processed frames from the two most accu-
rate decompositions and the newly proposed two fu-
sion algorithms are included in Fig. 4. 

 
Fig. 3. Deviations of the Detection Rate,  

Precision and F measure  

a b 

c d 

e f 

Fig. 4. Frame 257 from the O_SU_02 video:  
a – original, b – groundtruth, c – FastLADMAP,  

d – ROSL, e – Fusion OR, f – Fusion AND 

4. DISCUSSION 

The fastest algorithm is LRR ROSL with PT = 
15.46.10-7 sec/px, almost 24 times faster than the 
slowest LRR LADMAP (Fig. 1). Fusion OR and Fu-
sion AND take 0.58.10-7 and 0.42.10-7 sec/px, re-
spectively. These times, although much smaller than 
the PT of all decompositions, are not negligible and 
should be taken into consideration. 

Based on the achieved F measures, the most accu-
rate single decomposition implementation is the LRR 
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ROSL (0.8050), followed by the LRR FastLADMAP 
with 0.7244 (Fig. 2). There is no significant difference 
in deviation of accuracy parameters among all tested 
implementations (Fig. 3).  

Fusion OR over the ROSL and FastLADMAP leads 
to higher DR = 0.8791 than any of the four basic de-
compositions (Fig. 2). Fusion AND on the other hand 
yield higher Precision = 0,7040 – 1.07 times higher 
than the ROSL, turning out to be the most precise 
single algorithm (Fig. 2).  

At visual inspection of the processed videos, it could 
be observed that the LRR basic decomposition algo-
rithms produce in some of the cases spots within the 
binary frames, which are not part of a moving object, 
but are appearing artefact from the video compres-
sion or present noise. In some cases, such spots are 
result of slight movement of an object, which casts 
shadow over the visible portion in the frame. The 
higher the DR is, the more of these spots may ap-
pear. Examples for such False Positives are seen in 
Fig. 4 c and d in the lower and top-right area of the 
frame. Applying the Fusion OR do not remove them 
(Fig. 4 e), but the Fusion AND does – Fig. 4 f. In gen-
eral, there is a reduction in the DR for the Fusion AND 
algorithm but getting higher Precision for the detection 
process. Another inconsistency is the appearance of 
holes in moving objects – at uneven illumination, for 
example due to reflected light (Fig. 4 a, c-f).  

5. CONCLUSION 

In this paper, 4 single LRR decomposition algorithms 
are tested over videos with varying conditions for de-
tection of moving objects – the IALM, LADMAP, 
FastLADMAP, and the ROSL. Resulting frames from 
two of the most accurate – the FastLADMAP and 
ROSL are being passed to a fusion process – once 
with the logical OR operator and once – with the 
AND. Higher detection rate is the result in the first 
case with lower precision and the opposite in the 
second case. Both fusion schemes are considered 
applicable in numerous systems, employing video 
analysis, e.g., video surveillance, vehicle traffic con-
trol, automated production, etc. 
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