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Abstract 

Diffusion processes occur in many scientific areas, they are especially important in chemistry, biology and medicine. The most part of 
mathematical models for a description of diffusion are nonlinear Partial Differential Equations which do not have analytical solutions, 
and numerical methods require large computing resources. As scientific interest to the structures (fractal clusters) generated in the 
result of diffusion processes grows, the search of new models is intensified. The important method complementary to mathematical 
models is imitation modeling in which space mobility of the particles of a substance is directly modeled. 

There are two directions in such an approach: an imitation of random walks of particles and cellular automata modeling. In this work 
we implement based on random walk algorithms for the modeling of the growth of fractal clusters on triangulated surfaces. We use 
classical variants of Diffusion Limited Aggregation (DLA) and Reaction Limited Aggregation (RLA) models. It is shown that for Cluster 
Aggregation (CCA) model fractal cluster cannot be constructed correctly without additional assumptions about the cluster restructuring. 
The software is implemented on Python language and may be used by both researchers and students as a tool for modeling complex 
processes. 

 

 
1. INTRODUCTION 

Diffusion is one of main processes when two sub-
stance interact. Hence the mathematical and imita-
tion modelling are common tool for research. Mathe-
matical models are often do not have analytical solu-
tions and we need to apply numerical methods. In 
additional to these methods one may use imitation 
modelling in which a mobility of particles is modelled 
directly. Such an approach allows obtaining visual 
representation of the objects which appear in the re-
sult of diffusion both on surfaces and in the space. 
Complex structures generated by various diffusion 
processes are called aggregates or fractal clusters 
due to their similarity with well-known objects. Really, 
aggregates may be not only fractals but multifractals 
as well. 

The active studying of such structures began in 1970 
and continues successfully up to now. Imitation mod-
elling of the growth of fractal clusters in an environ-
ment having given physical properties may help in 
the forecasting the process under study. Fractal ag-
gregates appear in the process of crystallization [8], 
and hemagglutination [14]. Imitation modelling was 
applied to the study of the spread of cancer cells in 
blood [16]. 

The models of the construction of fractal clusters 
may be divided into following groups [13]: 

 by a method of cluster formation (cluster-par-
ticle or cluster-cluster) 

 by a method of the motion of particles or clus-
ters (chaotic or directional)  

 by a method of sticking of particles or clusters 
depending on a coefficient. 

In 1981 W. Witten and L. Sander proposed the first 
computer model (DLA) [15] constructing a fractal 
cluster on the plane as a results of random walks of 
particles which are thrown one by one. Then this 
model was widened and modified, that resulted in the 
description of RLA which allowed the modelling by 
addition of a physical parameter of a given environ-
ment, and CCA model which considered the motion 
of clusters not particles. 

The second approach to the diffusion modeling is 
based on a widened notion of cellular automata. In 
this notion any alphabet, any transition functions and 
any regimes of the change of cell states are possible. 
Such a wide interpretation of cellular automata al-
lows us to construct mathematical descriptions of 
space-time processes of various character including 
the processes with self-organisation ([1], [4]) 

In practical application it is important to use the mod-
elling both on surfaces and in the space. An imple-
mentation of DLA algorithm on the bone surface and 
based on cellular automata approach was proposed 
in [4]. In [2] the optimized DLA algorithm on triangu-
lated surface based on random walk was designed 
and implemented. CCA model was applied to study 



34   CEMA’21 conference, Athens 

processes in colloidal solutions and aerogels, the im-
plementation was made in space configuration 
[10,11]. 

In this work we present based on random walk imita-
tion modelling for DLA, RLA and CCA models. Opti-
mized DLA and RLA are realized on triangulated sur-
face, for CCA it is shown that in the framework of 
classical model a correct implementation on a sur-
face is impossible without an assumption about the 
cluster restructuring. 

The software implemented on Python includes the 
following algorithms 

 Triangulation of a surface by the marching 
method  

 Base and optimized DLA for triangulated sur-
face  

 RLA  

 CCA on a square lattice 

 Visualization of results in 3D 

The paper is organized by the following way. In sec-
tions 2 and 3 DLA model and its optimization both on 
the plane and a triangulated surface are described. 
The CCA model is discussed in the next section. In 
5 we describe RLA model. The results of numerical 
experiments are given.  

2. DLA MODEL 

2.1.  Witten-Sander base model 

In this variant particles are thrown on the plane ran-
domly and walk by random way on a square lattice. 
The initial particle is considered as a cluster. Every 
next particle may move equiprobably in 4 directions 
– up, down, left, right – on the lattice lines or cells. A 
particle joins to the cluster if it is a neighbour for a 
particle in the cluster. The choice of a way of moving 
depends on the representation of a particle – it may 
be presented by a vertex of the lattice or by a cell. 
The representation naturally influences on the visu-
alization results. 

2.2. DLA on triangular lattice 

In this case we should define the directions of the 
particle transitions. For a particle being in a triangular 
with sides a, b, c define the probabilities to move in 
neighbour triangulars through corresponding sides 
as follows  
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Divide the segment [0,1] on intervals proportionally 
these probabilities. Choose a random number and 
depending on the interval in which it lies take the 
neighbour cell. 

For example in the triangular with sides 3, 4, 5 we 
have p(a)=20/47, p(b)=15/47, p(c)=12/47. The unit 
segment is divided as [0, 20/47, 35/47, 1]. If the ran-
dom number is in the first interval we go to the neigh-
bour triangular through side a, etc. 

3. OPTIMIZATION OF DLA ALGORITHM 

In applications the base DLA model has some disad-
vantages: 

1. Every particle moves on a lattice chaotically 
and the number of steps is unbounded. Hence 
for large parts of surfaces the number of steps 
which are required to join to a cluster grows 
indefinitely. Thus for the large number of par-
ticles the run time may be unpredictably large. 

2. In real experiments one usually model several 
clusters on the same surface. But this fact is 
not taken into account, that also results in the 
run time growth.  

It follows that in real modelling we have to use some 
restrictions on the number of particles, size of the 
surface and the number of particles in the cluster.  
Besides that we consider a variant optimization 
based on a reducing the number of random walking. 

3.1. Optimization on square lattice 

The optimization proposed in [2], defines the position 
of joining of a particle to a cluster in advance, at the 
moment when the particle is thrown on the lattice.  
For a square lattice with М cells we compute a matrix 
of choice of coefficients G [M, M] which will be used 
to define the particle position. 

When a particle is thrown on a lattice the choice co-
efficients are calculated for each boundary points of 
the cluster. It is known [2] that these coefficients de-
pend on only the sum of coordinate distances (a on 
abscissa and b on ordinate) between a new particle 
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and boundary points of the cluster and may be cal-
culated as 

𝑝(𝑎, 𝑏) =
1

4(𝑎 + 𝑏)
 (2) 

We consider the obtained coefficients as values of a 
distribution function, choose a value randomly and 
the preimage of this value defines the position of join-
ing. 

3.2.  Optimization on a surface 

For a triangulated surface we present the structure 
of a lattice by a graph, such that triangles correspond 
graph vertices, and edges between vertices mean 
that these triangles are adjacent. Define on edges 
(paths by length 1) weights (choice coefficients) 
which are calculated by (1). Write these weights in a 
matrix 𝐺1.  Then construct a sequence of matrices  
{𝐺𝑘}, such that 𝐺𝑘 contains choice coefficients for 
k-length paths. The weight of a path equals the prod-
uct of weights of edges. 

In  𝐺1 denote by 𝑝(𝑖, 𝑗)  the weight of the edge (i,j). 

Let  𝑝(𝑖, 𝑗) = 𝑦,  and  𝑝(𝑗, 𝑗1) = 𝑦1, 𝑝(𝑗, 𝑗2) =
𝑦2, 𝑝(𝑗, 𝑗3) = 𝑦3 for neighbors of j. Then in  𝐺2 in 

elements with indices  (i,𝑗1), (i, 𝑗2), (i, 𝑗3)   the coef-
ficients 𝑝(𝑖, 𝑗1) = 𝑦𝑦1, 𝑝(𝑖, 𝑗2) = 𝑦𝑦2,
𝑝(𝑖, 𝑗3) = 𝑦𝑦3 will be written. Thus (𝑖, 𝑗1) corre-
sponds to the 2-length path from i to 𝑗1 and its weight 
is the product of the edges of the path. The matrices 
of higher order are constructed by analogy. 

The common matrix of the choice coefficients is cal-
culated  as the sum of 𝐺𝑘, where k is from 1 to a 
given N. The position of the place of the joining to the 
cluster is defined by the analogy with the case 3.1. 

The optimized algorithm may require more or equal 
time than the base one. The optimization results in 
considerable time gain when we conduct a series of 
experiments, because the matrix G is calculated one 
time for a given surface.  

Summing up one may say that: 

1. when modeling one cluster the base and opti-
mized algorithms show close results. The op-
timized variant may be slower if the number of 
triangular is large. 

2. when modeling the large number of clusters 
the optimized algorithm reduces run-time con-
siderably.  

The optimized algorithm for a triangulated surface 
was implemented in [3]. 

In the next table the results of the both algorithms on 

the surface 𝑥3 + 𝑦2 + 𝑧 = 0 are given. The num-
ber of triangles is 4000, the number of particles in 
cluster is 500. 

Table 1. The comparison of base  
and optimized DLA algorithms 

The number of 
clusters 

Base 
DLA 

Optimized 
DLA 

1 5m 56s 6m 59s 

5 53m 11s 11m 41s 

 

 

Figure 1. The result obtained by optimized DLA  

on the surface 𝒙𝟑 + 𝒚𝟐 + 𝒛 = 𝟎 

4. CCA MODEL  

4.1. CCA on square lattice 

This model was proposed in [9]. As opposed to par-
ticle-cluster model in this model the common number 
of particles is known and all of them are on the sur-
face (or plane). 

The particles randomly walk on the lattice. When 2 
particles collide they join into a cluster, and this clus-
ter continue to walk. It is assumed that the probability 
of collision of 3 or more clusters is very small. At the 
end of the modelling we have a final aggregate. 

The movement of a cluster on square lattice is similar 
to the movement of a particle –-on every step the 
cluster may move one cell left or right or up or down 
equiprobably. Clusters are considered to be sticky if 
at least one particle of the first cluster is on the cell 
which is neighbor of a particle of the second one. In 
such a situation due to the square lattice, a cluster 
moves as a single whole and saves his structure.  

4.2. Problems of CCA on triangular lattice   

On a triangular lattice we not always can model the 
cluster movement to save its structure. To explain 
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the situation we give the following definitions. We call 
the movement of a cluster correct if  

1) every particle of the cluster passes through the 
same number of the cells of the lattice. 

2) the number of particles does not change, i.e 
the structure is preserved. 

The movement of a cluster is semi-correct if only 1) 
or 2) holds. The movement is incorrect if it is not 
correct or semi-correct. 

It is easy to note that the movement of a cluster on 
square grid is correct, because all the particles pass 
the same distance in a chosen direction and the 
structure is preserved. 

On a regular triangular grid the movement of a clus-
ter may be only semi-correct. In this case different 
particles may pass different distances and move in 
different directions. Hence to save the structure the 
cluster has to turn. In other words we cannot move 
the cluster as a single whole. Such a situation is ex-
plained by the structure of triangular lattice. 

On Fig.2 the red cluster on the left part of the picture 
moves in the direction marked the black arrow on 1 
cell. On the right side its initial position (blue color) 
and the result of the movement (red color) are 
shown. We see that some particles pass 1 cell, and 
one particle should pass 3. We see that the cluster 
makes 1 step, but to do it possible the particles 
should pass different number of cells. According to 
our definition the movement is semi-correct, because 
1) does not hold. Note that this situation is possible 
only for regular triangular grid on the plane. 
 

 

Figure 2. The example of the motion of a cluster  
on regular triangular grid:  

particles of the cluster make different number of steps 

For non-regular triangular lattice the nodes of the lat-
tice may have different number of neighbors and it 
does not allow preserving the structure of a cluster. 
This situation is illustrated on Fig.3. Blue cluster con-
sists of 5 particles, every particle has 2 neighbors. 
We cannot move it into red area without changing the 
structure. 

 

 

Figure 3. Restructuring on non-regular grid: 
blue cluster cannot be moved to the red area  

without changing its structure 

Thus, it is impossible to implement CCA algorithm on 
a non-regular lattice without modifications allowing 
the cluster restructuring. For example in [17] the au-
thors assumed that a cluster may spin, and when 2 
clusters stick together they can spin in the point of 
contact. They also proposed that there is a tension 
between particles, hence particles may influence 
each other in the process of the cluster growth. It 
may lead to a change of the cluster structure. 

In real tasks the modelling of CCA on a surface has 
a limited scope of application, and the modelling in 
the space is more important. In this case some prob-
lems appearing for non-regular lattice on a surface 
may be solved and a cluster may be admitted to turn 
or change a structure. Such a model may be used 
when studying colloid solution or aerogels. In [16] an 
interesting variant of CCA space model in a bound-
ary area was implemented: when cluster collides 
with boundaries it moves in opposite direction. This 
model may be applied to the modelling of nanoscale 
medicinal products [10], catalytic reactions [11] and 
physical properties of materials. 

5. RLA MODEL 

To take into account physical properties of a real en-
vironment we should introduce some parameters. In 
this model the probability of joining a particle to a 
cluster is considered. 

Proposed in [7] RLA (Reaction Limited Aggregation) 
model describes the growth of a fractal cluster when 
the probability of sticking together is small. In [12] the 
authors merged CCA and RLA models, introduced 
the binding energy between particles and assumed 
that the probability of sticking depends on the time of 
random walking and the time of breaking binds. Thus 
the probability of sticking is dynamical. 
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We implemented RLA on a triangulated surface and 
used a probability of sticking as a parameter. This is 
a modification of DLA and may be performed both for 
base and optimized variants. 

If a particle is near a cluster and the probability of 
sticking  𝑝𝑠 is small it continue to walk. Denote the 
number of walks by N and the number of walks which  
lead a particle to a cluster by 𝑁𝑤. One may assume 
that the less 𝑝𝑠 the more 𝑁𝑤. For example if 𝑝𝑠 =
0.2 we may take 𝑁𝑤 ≤ 10, and for 𝑝𝑠 = 0.5 take 
𝑁𝑤 ≤ 6. If after N walking 𝑁𝑤 = 0 (the particle did 
not get closer to the cluster) we delete the particle 
and throw a new one. 

The example of the construction of the aggregate on 

the surface 𝑥3 + 𝑦2 + 𝑧 = 0 for 𝑝𝑠 = 0.1 (left) 

and 𝑝𝑠 = 1  (right) is shown on Fig. 4. The number 
of triangles is 1419, the number of particles is 200. 

The run-time for 𝑝𝑠 = 0.1 is 1m 3s, and 19s for 

𝑝𝑠 = 1. 

 

     

Figure 4. RLA model on the surface 
 

𝒙𝟑 + 𝒚𝟐 + 𝒛 = 𝟎 

𝒑𝒔 = 𝟎. 𝟏 (left)    𝒑𝒔 = 𝟏(𝐫𝐢𝐠𝐡𝐭) 

The triangulation was performed by the marching 
method proposed by E. Hartmann [5]. It is quite sim-
ple to implement and may be applied to any type of 
a surface. The size of the lattice may be defined by 
a parameter. 

6. CONCLUSION 

Mathematical models of diffusion are rather complex 
and as a rule do not have analytical solutions. For a 
successful study of diffusion processes one should 
combine mathematical and numerical methods and 
imitation modelling. In this work we present a pro-
gram system for the imitation modelling of the growth 
of fractal clusters on a triangulated surface by DLA 
and RLA models. It is shown that CCA model cannot 
be implemented on a triangular grid without a re-
structuring of a cluster. The program may be useful 
both for researchers and students. 
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