
FPGA BASED EDGE DETECTION:
INTEGER SQUARE ROOT ALGORITHM

Dimitre Kromichev

Department of Marketing and International Economic Relations, University of Plovdiv
24 Tzar Asen Str, Plovdiv 4000, Bulgaria

dkromichev@yahoo.com

Abstract

In FPGA based edge detection which uses gradients to find contours, the calculation of integer square root focused on both accura-
cy and speed presents a serious problem. In this paper, proposed is an integer square root algorithm. Its application is focused on
computing the gradient magnitude in FPGA based edge detection. The algorithm is explored for mathematical accuracy, maximum
operating frequency and minimum number of clock cycles on the basis of ten Intel (Altera) FPGA families. It is ascertained that the
algorithm guarantees total mathematical accuracy. Its maximum operating frequency is higher than the maximum operating frequen-
cy of embedded memory, and it requires a single clock cycle to execute. The proposed algorithm’s capabilities are assessed on a
comparative basis.

1. INTRODUCTION

In FPGA based edge detection which relies on gra-
dient to detect image contours the accuracy of the
obtained gradient magnitude value depends on the
accuracy of square root calculations. Hardware
implementation of integer square root is a serious
problem due to the complexity of computations.
Hence the most widely used approach is to priori-
tize speed over mathematical accuracy by resorting
to different approximation patterns. The latter gen-
erally have a strong negative impact on the quality
of detected contours. Therefore, when the focus is
on both achieving the ultimate execution speed and
guaranteeing the detected contours’ quality FPGA
based edge detection using gradient requires an
integer square root algorithm which is capable of: 1)
providing mathematically accurate result for the
smallest possible count of clock cycles; 2) working
at a clock frequency which is higher than the maxi-
mum operating frequency of the component defin-
ing the upper limit of clock frequency in FPGA
based edge detection.

The algorithm which most current FPGAs use is
radix 2 digit reccurence square root [5][6]. Digit
recurrence methods rely on subtractions and itera-
tions [8]. Hence, they have limited performance in
hardware [7][15]. Another approach is the functional
iteration which is divided into additive and multipli-
cative according to the operation used in each itera-
tive step [3][9]. Newton–Raphson method has the
disadvantage of using division [1]. FPGA focused

modifications include: modified nonrestoring square
root using only subtraction [12][13][14]; nonrestor-
ing pipelined square root using only subtraction [4];
square root based on linear approximation subsys-
tem with Look-up tables [10][11]; square root based
on subtractors and multipliers - appropriate only for
small numbers [16]; square root based on succes-
sive subtraction of odd integers [2].

The objective of this paper is to propose an integer
square root algorithm. Its application is focused on
computing the gradient magnitude in FPGA based
edge detection. The task is to explore the algorithm
for mathematical accuracy, maximum operating
frequency and minimum number of clock cycles in
ten Intel (Altera) FPGA families. Used tools: Scilab,
Intel (Altera) Quartus, TimeQuest Timing Analyzer,
ModelSim. The hardware description language is
VHDL. Relevant to the conducted analyses and
drawn conclusions are gray scale images.

2. THE PROPOSED INTEGER SQUARE ROOT
ALGORITHM

The difference between the squares of any two
integers is presented by

 222)(2)(pppnpnn  (1)

 nppNp  ,1, ,

 Nn .

For 1p (1) becomes

 1)1(2)1(22  nnn . (2)

mailto:dkromichev@yahoo.com

26 CEMA’22 conference, Sofia

From (2) it follows that:

 The difference Dsq between the squares of

any two consecutive integers 1n and n is
a constant represented by an odd number

 1)1(2  nDsq . (3)

 The difference between any two consecutive
differences is a constant

 2)1( DsqDsq . (4)

Hence, the following sequence can be defined

 0

2222)))1(())1()2(((


 nnnnn (5)

Thus, every single number Nr represents a
radical which pertains to a specific interval

]),1([22 nnnn  by satisfying the inequalities

 nnrnnr  22 &)1(. (6)

All radicals included in]),1([22 nnnn  are

associated with a single integer n which represents
the square root result according to

]),1([22 nnnnn  . (7)

The accuracy of integer square root result depends
on rounding. On the basis of (3), (4) and (5), the

left- and rightmost values of]),1([22 nnnn 

include rounding and guarantee mathematical accu-
racy.

3. COMPUTATIONAL MECHANISM IN FPGA

Application of the algorithm: gradient magnitude
computation in FPGA based edge detection.

The upper limit of clock frequency of FPGA based
edge detection which relies on gradient is defined
by the maximum operating frequency of embedded
memory. The smallest possible count of clock cy-
cles required by an integer arithmetic operation to
execute is 1. Therefore, the goal of the algorithm is:
guarantee that for all possible values of the radical
in edge detection

)()(maxmax embMemFsquareIntF 

 1)(min  constsquareIntnTclk (8)

where

)(max embMemF is the maximum operating

 frequency of embedded
 memory,

)(max squareIntF is the maximum operating

 frequency of the proposed
 algorithm,

)(min squareIntnTclk is minimum number of clock

 cycles required by the pro-
 posed algorithm to execute.

In edge detection, all radicals are within

])12()12(,0[2828  . In FPGA, the computational

mechanism includes four steps:

Step #1. The value of gradient magnitude is within

]12,0[8 . Because 00  , 0r is a special

case and a separate interval is not used. Thus,

radicals are distributed across 128 intervals ac-
cording to (3), (4), (5), (6) and (7).

Step #2. Each of these intervals is associated with

a single integer within]12,1[8 .

Step #3. The boundaries of all intervals are
checked simultaneously. Of all checks, only for a
single interval the boolean result is true. Thus the
square root calculation is checking if a radical fits
within the boundaries of a particular interval.

Step #4. The integer associated with this interval is
the accurate integer square root result.

The model of computational mechanism is present-
ed in Figure 1.

Figure 1. The model of computational mechanism
of the algorithm

CEMA’22 conference, Sofia 27

The RTL design is in Fig. 2.

a)

b)

Figure 2. RTL design of a single interval calculation (a)
and the entire algorithm (b) (Source: Intel (Altera) Quartus)

Resource utilization is in Table 1.

Table 1. Resource utilization of the proposed algorithm

4. PROVING THE ALGORITHM’S
MATHEMATICAL ACCURACY

The proposed algorithm is tested for mathematical
accuracy using all possible values of the radical in
FPGA based gradient magnitude.

 Critical to the mathematical accuracy of an inte-
ger square root algorithm is the accurate rounding.
Sample results are presented below.

Check # 1

Radical: 35984. Therefore the interval is [35911,
36290]. The reference value is 190. This is the re-
sult. Conventional square root result:
189.6944912220700203.

Check # 2

Radical: 33800. Therefore the interval is [33673,
34410]. The reference value is 184. This is the re-
sult. Conventional square root result:
183.8477631085023563.

Check # 3

Radical: 42353. Therefore the interval is [42231,
42642]. The reference value is 206. This is the re-
sult. Conventional square root result:
205.7984450864486002.

Check # 4

Radical: 37370. Therefore the interval is [37057,
37442]. The reference value is 193. This is the re-
sult. Conventional square root result:
193.3132173442881789.

Another approach to proving accuracy is checking
the boundary values of the intervals. Ten sample
checks are presented in Table 2.

Table 2. Proving the accuracy by checking the boundary
values of the intervals

These checks prove that the proposed algorithm
guarantees total mathematical accuracy.

5. EXPLORING)(max squareIntF AND

)(min squareIntnTclk IN FPGA

Exploration methodology:

 The algorithm is implemented using all val-

ues in])12()12(,0[2828   .

The results are shown in Table 3.

Table 3.)(max squareIntF and)(min squareIntnTclk

of the proposed algorithm

Test results prove the functional capabilities of the
proposed integer square root algorithm:

 Total mathematical accuracy of results

28 CEMA’22 conference, Sofia

)(max squareIntF)(max embMemF for all

values of radical which can be calculated in
FPGA based gradient edge detection

 1)(constsquareIntnTclkmun
.

All existing integer square root algorithms have two
stages:

Stage #1. Execute operation square root over a
radical r

 (9)
where

*n is the square root result before rounding.

Stage #2. Execute rounding to obtain mathematical-
ly accurate square root result n

nn  1/0* (10)

In the proposed integer square root algorithm based
on intervals, Stage #1 and Stage #2 are combined
into a single operation executed as a number of
parallel comparisons. Therefore, with respect to the
technology of executing comparison in FPGA,

)(max squareIntF depends on the propagation de-

lay of ripple carry adder and sign check operation.

The proposed algorithm’s speed characteristics are
assessed on a comparative basis using the radix-2
iterative square root algorithm. The comparison

between)(max squareIntF and the highest operat-

ing frequency of the radix-2 iterative square root

)(max quareIterativeSF is conducted on the basis

of executing the iterative square root within two
clock cycles – a separate clock cycle is used for
rounding. The comparison results show that

)(max squareIntF is higher than

)(max quareIterativeSF from 82.9% to 87.1%.

6. CONCLUSION

Proposed is an integer square root algorithm. Its
application is focused on calculating gradient mag-
nitude in FPGA based edge detection. The algo-
rithm is explored for mathematical accuracy, maxi-
mum operating frequency and minimum number of
clock cycles in ten Intel (Altera) FPGA families.
Exploration results are assessed on a comparative
basis using radix-2 iterative square root.

References

[1] Addanki Purna Ramesh and I. Jayaram Kumar, “Im-
plementation of Integer Square Root,” International
Journal of Engineering Science and Innovative Tech-
nolog (IJESIT), Volume 4, Issue 1, January 2015, pp.
105-113

[2] Aiman Zakwan Jidin and Tole Sutikno, “FPGA Imple-
mentation of Low-Area Square Root Calculator,”
TELKOMNIKA, Vol. 13, No. 4, December 2015, pp.
1145~1152

[3] Anuja Nanhe, Gaurav Gawali, Shashank Ahire, and K.
Sivasankaran, “Implementation of Fixed and Floating
Point Square Root Using Nonrestoring Algorithm on
FPGA,” International Journal of Computer and Electrical
Engineering, vol. 5, no. 5, 2013, pp. 533-537

[4] Arpita Jena and Siba Ku Panda, “FPGA-VHDL Imple-
mentation of Pipelined Square root Circuit for VLSI Sig-
nal Processing Applications,” International Journal of
Computer Applications, Volume 142 – No.5, May 2016

[5] Fernando Martin del Campo, Alicia Morales-Reyes,
Roberto Perez-Andrade, Rene Cumplido and Aldo G.
Orozco-Lugo Claudia Feregrino, “A multi-cycle fixed
point square Root and module for FPGAs,” IEICE Elec-
tronics Express, Vol. 1 – No. 7, 2008, pp. 957-966

[6] Florent de Dinechin, Mioara Maria Joldes, Bogdan
Pasca, and Guillaume Revy, “Multiplicative square root
algorithms for FPGAs.,” International Conference on
Field Programmable Logic and Applications, Aug 2010,
pp.14-17

[7] G. Anupama and A. Raghuram, “Novel Square Root
Algorithm and its FPGA Implementation,” International
Journal of Engineering and Technical Research
(IJETR), Vol. 3 (10), 2015, pp. 64-67

[8] Muhazam Mustapha, Burinieamman Jayabalan and
Anis Shahida Niza Mokhtar, “Intel/Altera FPGA Imple-
mentation of CORDIC Square Root Algorithm,” Journal
of Computer Science & Computational Mathematics,
Vol. 11, Issue 3, September 2021, pp. 52-56

[9] Palchaudhuri and Rajat Subhra Chakraborty, “High
Performance Integer Arithmetic Circuit Design on FPGA:
Architecture, Implementation and Design Automation,”
Springer, 2016

[10] Purna Ramesh Addanki, “Implementation of Integer
Square Root,” International Journal of Engineering Sci-
ence and Innovative Technology (IJESIT), Vol. 4 (1),
2015, pp. 104-112

[11] S. Lachowicz and H-J. Pfleiderer, “Fast Evaluation of
the Square Root and Other Nonlinear Functions in
FPGA,” IEEE International Symposium on Electronic
Design, Test & Applications - DELTA, 2008, pp. 474-477

[12] Tole Sutikno, “An Optimized Square Root Algorithm for
Implementation in FPGA Hardware,” TELKOMNIKA,
Vol. 8, No. 1, 2010, pp. 1 – 8

[13] Tole Sutikno, “An Efficient Implementation of the Non
Restoring Square Root Algorithm in Gate Level,” Inter-

*nr 

CEMA’22 conference, Sofia 29

national Journal of Computer Theory and Engineering,
Vol.3, (1), 2012, pp. 46-51

[14] Tole Sutikno, Aiman Zakwan Jidin, Auzani Jidin and Nik
Rumzi Nik Idris, “VHDL Coding of Modified Non-
Restoring Square Root Calculator,” International Journal
of Reconfigurable and Embedded Systems (IJRES) ,
Vol. 1 (1), 2012, pp. 37~42

[15] Vladitiu, M., Computer Arithmetic: Algorithms and Hard-
ware Implementations, 2012

[16] Zhongcheng Zhou and Jingchun Hu, “A Novel Square
Root Algorithm and its FPGA Simulation,” Journal of
Physics: Conference Series, Volume 1314, 3rd Interna-
tional Conference on Electrical, Mechanical and Com-
puter Engineering 9–11 August 2019, pp. 168-176

	7

