
FPGA BASED EDGE DETECTION:  
INTEGER SQUARE ROOT ALGORITHM 

Dimitre Kromichev 

Department of Marketing and International Economic Relations, University of Plovdiv  
24 Tzar Asen Str, Plovdiv 4000, Bulgaria 

dkromichev@yahoo.com 
 
 

Abstract 

In FPGA based edge detection which uses gradients to find contours, the calculation of integer square root focused on both accura-
cy and speed presents a serious problem. In this paper, proposed is an integer square root algorithm. Its application is focused on 
computing the gradient magnitude in FPGA based edge detection. The algorithm is explored for mathematical accuracy, maximum 
operating frequency and minimum number of clock cycles on the basis of ten Intel (Altera) FPGA families. It is ascertained that the 
algorithm guarantees total mathematical accuracy. Its maximum operating frequency is higher than the maximum operating frequen-
cy of embedded memory, and it requires a single clock cycle to execute. The proposed algorithm’s capabilities are assessed on a 
comparative basis. 

 
 
1. INTRODUCTION 

In FPGA based edge detection which relies on gra-
dient to detect image contours the accuracy of the 
obtained gradient magnitude value depends on the 
accuracy of square root calculations. Hardware 
implementation of integer square root is a serious 
problem due to the complexity of computations. 
Hence the most widely used approach is to priori-
tize speed over mathematical accuracy by resorting 
to different approximation patterns. The latter gen-
erally have a strong negative impact on the quality 
of detected contours. Therefore, when the focus is 
on both achieving the ultimate execution speed and 
guaranteeing the detected contours’ quality FPGA 
based edge detection using gradient requires an 
integer square root algorithm which is capable of: 1) 
providing mathematically accurate result for the 
smallest possible count of clock cycles; 2) working 
at a clock frequency which is higher than the maxi-
mum operating frequency of the component defin-
ing the upper limit of clock frequency in FPGA 
based edge detection.  

The algorithm which most current FPGAs use is 
radix 2 digit reccurence square root [5][6]. Digit 
recurrence methods rely on subtractions and itera-
tions [8]. Hence, they have limited performance in 
hardware [7][15]. Another approach is the functional 
iteration which is divided into additive and multipli-
cative according to the operation used in each itera-
tive step [3][9]. Newton–Raphson method has the 
disadvantage of using division [1]. FPGA focused 

modifications include: modified nonrestoring square 
root using only subtraction  [12][13][14]; nonrestor-
ing pipelined square root using only subtraction [4]; 
square root based on linear approximation subsys-
tem with Look-up tables [10][11]; square root based 
on subtractors and multipliers - appropriate only for 
small numbers [16]; square root based on succes-
sive subtraction of odd integers [2]. 

The objective of this paper is to propose an integer 
square root algorithm. Its application is focused on 
computing the gradient magnitude in FPGA based 
edge detection. The task is to explore the algorithm 
for mathematical accuracy, maximum operating 
frequency and minimum number of clock cycles in 
ten Intel (Altera) FPGA families. Used tools: Scilab, 
Intel (Altera) Quartus, TimeQuest Timing Analyzer, 
ModelSim. The hardware description language is 
VHDL. Relevant to the conducted analyses and 
drawn conclusions are gray scale images. 

2.  THE PROPOSED INTEGER SQUARE ROOT 
ALGORITHM 

The difference between the squares of any two 
integers is presented by  

 222 )(2)( pppnpnn   (1) 

 nppNp  ,1, , 

 Nn . 

For 1p  (1) becomes 

 1)1(2)1( 22  nnn . (2) 
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From (2) it follows that: 

 The difference Dsq  between the squares of 

any two consecutive integers 1n  and n  is 
a constant represented by an odd number 

 1)1(2  nDsq . (3) 

 The difference between any two consecutive 
differences is a constant 

 2)1(  DsqDsq . (4) 

Hence, the following sequence can be defined 

 0

2222 )))1(())1()2((( 


 nnnnn   (5) 

Thus, every single number Nr represents a 
radical which pertains to a specific interval 

]),1([ 22 nnnn   by satisfying the inequalities  

 nnrnnr  22 &)1( . (6) 

All radicals included in ]),1([ 22 nnnn   are 

associated with a single integer n which represents 
the square root result according to 

 ]),1([ 22 nnnnn  . (7) 

The accuracy of integer square root result depends 
on rounding. On the basis of (3), (4) and (5), the 

left- and rightmost values of ]),1([ 22 nnnn   

include rounding and guarantee mathematical accu-
racy. 

3. COMPUTATIONAL MECHANISM IN FPGA 

Application of the algorithm: gradient magnitude 
computation in FPGA based edge detection. 

The upper limit of clock frequency of FPGA based 
edge detection which relies on gradient is defined 
by the maximum operating frequency of embedded 
memory. The smallest possible count of clock cy-
cles required by an integer arithmetic operation to 
execute is 1. Therefore, the goal of the algorithm is: 
guarantee that for all possible values of the radical 
in edge detection 

)()( maxmax embMemFsquareIntF   

 1)(min  constsquareIntnTclk  (8) 

where 

)(max embMemF           is the maximum operating 

                                   frequency of embedded 
                                   memory, 

)(max squareIntF         is the maximum operating 

                                   frequency of the proposed  
                                   algorithm, 

)(min squareIntnTclk   is minimum number of clock 

                                   cycles required by the pro- 
                                    posed algorithm to execute. 

In edge detection, all radicals are within   

])12()12(,0[ 2828  . In FPGA, the computational 

mechanism includes four steps: 

Step #1. The value of gradient magnitude is within 

]12,0[ 8 . Because 00  ,  0r  is a special 

case and a separate interval is not used. Thus, 

radicals are distributed across 128  intervals ac-
cording to (3), (4), (5), (6) and (7). 

Step #2. Each of these intervals is associated with 

a single integer within ]12,1[ 8 . 

Step #3. The boundaries of all intervals are 
checked simultaneously. Of all checks, only for a 
single interval the boolean result is true. Thus the 
square root calculation is checking if a radical fits 
within the boundaries of a particular interval. 

Step #4. The integer associated with this interval is 
the accurate integer square root result. 

The model of computational mechanism is present-
ed in Figure 1. 

 

Figure 1. The model of computational mechanism  
of the algorithm 
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The RTL design is in Fig. 2. 

 
a) 

 
b) 

Figure 2. RTL design of a single interval calculation (a)  
and the entire algorithm (b) (Source: Intel (Altera) Quartus) 

Resource utilization is in Table 1. 

Table 1. Resource utilization of the proposed algorithm 

 

4.  PROVING THE ALGORITHM’S 
MATHEMATICAL ACCURACY 

The proposed algorithm is tested for mathematical 
accuracy using all possible values of the radical in 
FPGA based gradient magnitude.  

    Critical to the mathematical accuracy of an inte-
ger square root algorithm is the accurate rounding. 
Sample results are presented below. 

Check  # 1 

Radical: 35984. Therefore the interval is [35911, 
36290]. The reference value is 190. This is the re-
sult. Conventional square root result: 
189.6944912220700203. 

Check  # 2 

Radical: 33800. Therefore the interval is [33673, 
34410]. The reference value is 184. This is the re-
sult. Conventional square root result: 
183.8477631085023563.  

Check  # 3 

Radical: 42353. Therefore the interval is [42231, 
42642]. The reference value is 206. This is the re-
sult. Conventional square root result: 
205.7984450864486002. 

Check  # 4 

Radical: 37370. Therefore the interval is [37057, 
37442]. The reference value is 193. This is the re-
sult. Conventional square root result: 
193.3132173442881789. 

Another approach to proving accuracy is checking 
the boundary values of the intervals. Ten sample 
checks are presented in Table 2. 

Table 2.  Proving the accuracy by checking the boundary 
values of the intervals 

 

These checks prove that the proposed algorithm 
guarantees total mathematical accuracy. 

5.  EXPLORING )(max squareIntF  AND 

)(min squareIntnTclk  IN FPGA 

Exploration methodology: 

 The algorithm is implemented using all val-

ues in ])12()12(,0[ 2828   . 

The results are shown in Table 3. 

Table 3. )(max squareIntF  and )(min squareIntnTclk   

of the proposed algorithm 

 

Test results prove the functional capabilities of the 
proposed integer square root algorithm:  

 Total mathematical accuracy of results 
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 )(max squareIntF )(max embMemF  for all 

values of radical which can be calculated in 
FPGA based gradient edge detection 

 1)( constsquareIntnTclkmun
. 

All existing integer square root algorithms have two 
stages:  

Stage #1. Execute operation square root over a 
radical r  

                    (9) 
where 

*n  is the square root result before rounding. 

Stage #2. Execute rounding to obtain mathematical-
ly accurate square root result n  

nn  1/0*                      (10) 

In the proposed integer square root algorithm based 
on intervals, Stage #1 and Stage #2 are combined 
into a single operation executed as a number of 
parallel comparisons. Therefore, with respect to the 
technology of executing comparison in FPGA,  

)(max squareIntF  depends on the propagation de-

lay of ripple carry adder and sign check operation. 

The proposed algorithm’s speed characteristics are 
assessed on a comparative basis using the radix-2 
iterative square root algorithm. The comparison 

between )(max squareIntF  and the highest operat-

ing frequency of the radix-2 iterative square root 

)(max quareIterativeSF  is conducted on the basis 

of executing the iterative square root within two 
clock cycles – a separate clock cycle is used for 
rounding. The comparison results show that 

)(max squareIntF  is higher than 

)(max quareIterativeSF  from 82.9% to 87.1%. 

6. CONCLUSION 

Proposed is an integer square root algorithm. Its 
application is focused on calculating gradient mag-
nitude in FPGA based edge detection. The algo-
rithm is explored for mathematical accuracy, maxi-
mum operating frequency and minimum number of 
clock cycles in ten Intel (Altera) FPGA families. 
Exploration results are assessed on a comparative 
basis using radix-2 iterative square root. 
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