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Abstract 

FPGA based edge detection targeting ultimate execution speed and relying on gradient direction to define image contours has to 
tackle the problem of computing integer inverse tangent both accurately and fast. This paper presents an integer inverse tangent 
algorithm.  It is designed to be used in the gradient direction submodule of FPGA based edge detection computations. Having inves-
tigated the mathematical accuracy, maximum operating frequency and minimum number of clock cycles on the basis of ten Intel 
(Altera) FPGA families, it is ascertained that the proposed algorithm is capable of securing total accuracy and working at  a frequen-
cy higher than the maximum operating frequency of embedded memory under all test conditions. It takes only three clock cycles to 
provide an accurate result. 

 
 
1. INTRODUCTION 

Because the hardware implementation of integer 
inverse tangent is complicated and slow, approxi-
mation patterns are employed as a tool of choice. In 
edge detection which uses gradient direction, de-
tected contours’ quality is negatively impacted by 
the inaccuracy of inverse tangent. Therefore, in 
FPGA based edge detection focused on ultimate 
execution speed, it is a must that the inverse tan-
gent can guarantee total mathematical accuracy. 
The latter must be achieved within the same num-
ber of clock cycles required by the gradient magni-
tude submodule to execute, taking into account that 
gradient magnitude and gradient direction submod-
ules work in parallel in FPGA. 

In [3] FPGA based design targets the speeding up 

of 1tan  computations. The results are: execution 
time is 320 ns; accuracy is <0.01°. Taylor series 

expansion method is applied to transfer 1tan  to a 

polynomial form [3][11].  In [6] two-argument 1tan  
is implemented in FPGA by using the piecewise 
polynomial approximation method with non-uniform 
segmentation. The inputs (x and y) are divided us-
ing radix-2 non-restoring division and the result is 
used as an input to Atan. The results are: maximum 
error ratio - 2.62%; execution time in Xilinx Spartan 
6 - 260.5 ns. In FPGA based design of two-

argument 1tan [9][8][10] division of the two inputs 
is implemented by a logarithmic transformation 
using subtraction. In [2] studied is the FPGA imple-

mentation of fixed-point two-argument 1tan  by 

comparing CORDIC with two multiplier based tech-
niques. It is concluded that CORDIC is fadter than 
the multiplier and table-based methods. In [12] pre-
sented are several approximations for four quadrant 

1tan  using Lagrange interpolation and optimiza-
tion techniques. It is concluded that second-order 
polynomial provides a favorable compromise be-
tween accuracy and computational cost and is well 
suited for implementation in hardware. In [5] it is 
pointed out that long latency is a main disadvantage 
of methods based on CORDIC, conventional LUTs 
and polynomial approximation. In [1] proposed is 
atan2 using look-up table with 101-points. The ac-
curacy is increased by linear interpolation. The 
achieved frequency is 60 MHz. The conclusion is: 
the accuracy of the proposed method is better than 
the approximation techniques. In [4] proposed is a 

high-accuracy computation of fixed-point 1tan us-
ing CORDIC and fast magnitude estimation. Maxi-
mum phase error is reduced from 414 LSB (angle 
error of 0.6355 rad) to 4 LSB (angle error of 0.0061 
rad). In [7] described is an FPGA implementation of 
tan-1 which is based on using CORDIC using serial 
and pipelined CORDIC architectures. 

The objective of this paper is to propose an integer 
inverse tangent algorithm targeting the computation 
of gradient direction in FPGA based edge detection. 
The mathematical accuracy, maximum operating 
frequency and minimum number of clock cycles of 
the algorithm must be investigated using ten Intel 
(Altera) FPGA families. The employed tools are: 
Scilab, Intel (Altera) Quartus, VHDL, TimeQuest 
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Timing Analyzer, ModelSim, The analyses and 
conclusions are relevant to gray scale images. 

2.  THE PROPOSED INTEGER INVERSE 
TANGENT ALGORITHM 

Application of the algorithm: computation of gradi-
ent direction. Goal of the algorithm: guarantee that 

)()(tan max
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max embMemFIntF   

 3)(tan 1

min  constIntnTclk  (1) 

where 

)(max embMemF      is maximum operating  

 frequency of  
 embedded memory, 

)(tan 1

max IntF   is maximum operating  

 frequency of the  
 proposed algorithm, 

)(tan 1

min IntnTclk   is minimum number of  

 clock cycles required  
 by the algorithm to  
 execute. 

Because the gradient direction values can only be 
0, 90, 45 and 135, four equations are defined: 
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where 

yG   is y gradient, ]255,255[yG  

xG   is x gradient, ]255,255[xG , 
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Solving (2), (3), (4) and (5) requires finding the do-
mains of four functions with predefined ranges 
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where  

0A ,
45A ,

90A ,
135A  are angular sectors in  

 which the axes 0, 45,  
 90 and 135 are  
 bisectors, 

pnm ,0 ,
4545,nm , 

8990,nm ,
135135,nm  are independent  

 variables and 
0m ,   

 pn
45m , 

4 5n , 
90m ,  

 
89n , 

135m , 
135n  are  

 within ]255,255[ . 

Therefore, the task is to define the complete set of 
values for the independent variables in (6), (7), (8) 
and (9). To accomplish this task, the following as-
pects must be considered: 

1) In order to avoid division by 0 the operation divi-
sion must not be used. 

2) The axes for 0, 45, 90 and 135 are further divid-
ed into two pairs. The ingredients of each pair are 
orthogonal. Hence, the angular sectors for 45 and 
135 are symmetrical with respect to the x-axis. 
Therefore  

 
|||| 13545 mm 

 
(10) 

and 

 
|||| 13545 nn 
 

(11) 

As a result, the difference between 45 and 135 is 
based on sign relations.  

3) Unlike 45 and 135, the difference between 0 and 
90 is defined by the fact that their angular sectors 
are symmertrical with respect to axis 45. As a re-
sult, the difference between 0 and 90 is based on 
comparison with respect to the boundaries of the 
angular sector for 45. 
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3. COMPUTATIONAL MECHANISM IN FPGA 

The algorithm includes: 

Step #1. Determine all combinations between the 
signs of Gyand Gx .  

Step #2. Define two reference points: 22.5° and 
67.5°. 

Step #3. Determine a numerical equivalent to angle 
22.5°. The accurate representation of angle 22.5° 

is the fraction 
239

99 : 
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Step #4. Determine a numerical equivalent to angle 
67.5°. The accurate representation of angle 67.5° 

is the fraction 
70

169: 
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Step #5. Calculate gradient direction Dir  by simul-
taneously executing expressions: 

If ( 0&0  GxGy ) or ( 0&0  GxGy ) then                                                  

If 239*||99*|| GyGx   

0Dir  

If                                                   

45Dir  

If 70*||169*|| GyGx            90Dir   

If ( 0&0  GxGy ) or ( 0&0  GxGy ) then                 

If 239*||99*|| GyGx           0Dir                              

If   70*||169*||&239*||99*|| GyGxGyGx                                                   

135Dir  

If 70*||169*|| GyGx           90Dir  

If  Gy = 0 & Gx ≠ 0                 0Dir  

If  Gy ≠ 0 & Gx = 0                 0Dir  

If  Gy = 0 & Gx = 0                 0Dir . (12)                                                                       

The computational mechanism in FPGA is presen-
ted in Figure 1. 

 

Figure 1. The model of computational mechanism in FPGA 

The RTL design of the algorithm is shown in Figure 
2.  

 

Figure 2.  RTL design of the algorithm (Source: Intel  
(Altera) Quartus) 

Resource utilization is presented in Table 1.  

Table 1. Resource utilization of the proposed algorithm 

 

4.  PROVING THE ALGORITHM’S    
MATHEMATICAL ACCURACY 

Mathematical accuracy is tested for all values of 

Gyand Gx in the interval ]255,255[ . Four sam-

ple test results are presented below.  

Check  # 1 

Gy = -160     Gx = -66  

|-66|*99     |-160|*239  (false) 

|-66|*99    <   |-160|*239   &  

|-66|*169  >   |-160|*70  (false) 

70 * | | 169 * | | & 239 * | | 99 * | | Gy Gx Gy Gx   
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|-66|*169    |-160|*70  (true) 

Therefore, 90Dir . 

Using the conventional method: 


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tan
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= 67.583852520656°. 

Check  # 2 

Gy = -48    Gx = 55 

55*99     |-48|*239  (false) 

55*99    <   |-48|*239   &   

55*169  >   |-48|*70   (true) 

55*169    |-48|*70  (false). 

Therefore, 135Dir . 

Using the conventional method:  

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  =  

 - 41.1120904°.  

Check  # 3 

Gy = -19       Gx = -46  

|-46|*99     |-19|*239  (true) 

|-46|*99    <   |-19|*239  &  

|-46|*169  >   |-19|*70  (false) 

|-46|*169    |-19|*70  (false) 

Therefore, 0Dir . 

Using the conventional method: 

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 = 

22.442753365294°. 

Check  # 4 

Gy = 19       Gx = 45  

|45|*99     |19|*239  (false) 

|45|*99    <   |19|*239   &   

|45|*169  >   |19|*70  (true) 

|45|*169    |19|*70  (false). 

Therefore, 45Dir . 

Using the conventional method: 



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 = 

22.890551656248°. 

 

Accuracy tests using the entire range of values in 

]255,255[  provide the data: 

1) Total calculated results: 261121 

2) Total results different from 0: 260100 

3) Total results equal to 0: 1021 

4) Distribution of non-zero results: 

 direction 0: 65025 

 direction 45: 65025 

 direction 90: 65025 

 direction 135: 65025. 

Thus it is proved that the fractions 
239

99  and 
70

169 are 

accurately calculated and the algorithm guarantees 
total accuracy. 

5.  EXPLORING )(tan 1

max IntF   AND     

)(tan 1

min IntnTclk   IN FPGA 

Exploration methodology: 

 The algorithm is implemented using all val-
ues in ]255,255[ . 

    The obtained results are in Table 2. 

    Test results prove the functional capabilities of 
the proposed algorithm: 

 Total mathematical accuracy 

 )(tan 1

max IntF 
)(max memF  for all  

values of Gyand Gx  

Table 2. Results for )(tan 1

max IntF 
 and 

)(tan 1

min IntnTclk 
 

 

 

 3)(tan 1  constIntnTclk  under all test 

conditions. 

The input data widths 8  bits for both the numera-

tor and denominator in the reference points 
239

99  

and  
70

169 . Because image pixel is within ]12,0[ 8 , 
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for Cyclone II-V and Stratix I-V, )(tan 1

max IntF  is 

defined by the maximum operating frequency  of  

9x9 hard multiplier. For Cyclone, )(tan 1

max IntF   

is defined by the maximum operating frequency of 
8x8 logic elements based multiplier.  

6. CONCLUSION 

This paper presents an integer inverse tangent 
algorithm. Its application is focused on computing 
gradient direction in FPGA based edge detection 
which targets ultimate execution speed. The de-
signed algorithm is explored for mathematical accu-
racy, maximum operating frequency and minimum 
number of clock cycles in ten Intel (Altera) FPGA 
families. 
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