
FPGA BASED EDGE DETECTION:
INTEGER INVERSE TANGENT ALGORITHM

Dimitre Kromichev

Department of Marketing and International Economic Relations, University of Plovdiv
24 Tzar Asen Str, Plovdiv 4000, Bulgaria

dkromichev@yahoo.com

Abstract

FPGA based edge detection targeting ultimate execution speed and relying on gradient direction to define image contours has to
tackle the problem of computing integer inverse tangent both accurately and fast. This paper presents an integer inverse tangent
algorithm. It is designed to be used in the gradient direction submodule of FPGA based edge detection computations. Having inves-
tigated the mathematical accuracy, maximum operating frequency and minimum number of clock cycles on the basis of ten Intel
(Altera) FPGA families, it is ascertained that the proposed algorithm is capable of securing total accuracy and working at a frequen-
cy higher than the maximum operating frequency of embedded memory under all test conditions. It takes only three clock cycles to
provide an accurate result.

1. INTRODUCTION

Because the hardware implementation of integer
inverse tangent is complicated and slow, approxi-
mation patterns are employed as a tool of choice. In
edge detection which uses gradient direction, de-
tected contours’ quality is negatively impacted by
the inaccuracy of inverse tangent. Therefore, in
FPGA based edge detection focused on ultimate
execution speed, it is a must that the inverse tan-
gent can guarantee total mathematical accuracy.
The latter must be achieved within the same num-
ber of clock cycles required by the gradient magni-
tude submodule to execute, taking into account that
gradient magnitude and gradient direction submod-
ules work in parallel in FPGA.

In [3] FPGA based design targets the speeding up

of 1tan computations. The results are: execution
time is 320 ns; accuracy is <0.01°. Taylor series

expansion method is applied to transfer 1tan to a

polynomial form [3][11]. In [6] two-argument 1tan
is implemented in FPGA by using the piecewise
polynomial approximation method with non-uniform
segmentation. The inputs (x and y) are divided us-
ing radix-2 non-restoring division and the result is
used as an input to Atan. The results are: maximum
error ratio - 2.62%; execution time in Xilinx Spartan
6 - 260.5 ns. In FPGA based design of two-

argument 1tan [9][8][10] division of the two inputs
is implemented by a logarithmic transformation
using subtraction. In [2] studied is the FPGA imple-

mentation of fixed-point two-argument 1tan by

comparing CORDIC with two multiplier based tech-
niques. It is concluded that CORDIC is fadter than
the multiplier and table-based methods. In [12] pre-
sented are several approximations for four quadrant

1tan using Lagrange interpolation and optimiza-
tion techniques. It is concluded that second-order
polynomial provides a favorable compromise be-
tween accuracy and computational cost and is well
suited for implementation in hardware. In [5] it is
pointed out that long latency is a main disadvantage
of methods based on CORDIC, conventional LUTs
and polynomial approximation. In [1] proposed is
atan2 using look-up table with 101-points. The ac-
curacy is increased by linear interpolation. The
achieved frequency is 60 MHz. The conclusion is:
the accuracy of the proposed method is better than
the approximation techniques. In [4] proposed is a

high-accuracy computation of fixed-point 1tan us-
ing CORDIC and fast magnitude estimation. Maxi-
mum phase error is reduced from 414 LSB (angle
error of 0.6355 rad) to 4 LSB (angle error of 0.0061
rad). In [7] described is an FPGA implementation of
tan-1 which is based on using CORDIC using serial
and pipelined CORDIC architectures.

The objective of this paper is to propose an integer
inverse tangent algorithm targeting the computation
of gradient direction in FPGA based edge detection.
The mathematical accuracy, maximum operating
frequency and minimum number of clock cycles of
the algorithm must be investigated using ten Intel
(Altera) FPGA families. The employed tools are:
Scilab, Intel (Altera) Quartus, VHDL, TimeQuest

mailto:dkromichev@yahoo.com

CEMA’22 conference, Sofia 31

Timing Analyzer, ModelSim, The analyses and
conclusions are relevant to gray scale images.

2. THE PROPOSED INTEGER INVERSE
TANGENT ALGORITHM

Application of the algorithm: computation of gradi-
ent direction. Goal of the algorithm: guarantee that

)()(tan max

1

max embMemFIntF

 3)(tan 1

min constIntnTclk (1)

where

)(max embMemF is maximum operating

 frequency of
 embedded memory,

)(tan 1

max IntF is maximum operating

 frequency of the
 proposed algorithm,

)(tan 1

min IntnTclk is minimum number of

 clock cycles required
 by the algorithm to
 execute.

Because the gradient direction values can only be
0, 90, 45 and 135, four equations are defined:

0tan

1

x

Y

G

G

(2)

where

yG is y gradient,]255,255[yG

xG is x gradient,]255,255[xG ,

45tan

1

x

Y

G

G

(3)

90tan

1

x

Y

G

G

(4)

135tan

1

x

Y

G

G

(5)

Solving (2), (3), (4) and (5) requires finding the do-
mains of four functions with predefined ranges

0

0

1

0 tan
n

m
A

(6)

4 5

4 5

1

4 5 tan
n

m
A

(7)

9 0

9 0

1

9 0 tan
n

m
A

(8)

1 3 5

1 3 5

1

1 3 5 tan
n

m
A

(9)

where

0A ,
45A ,

90A ,
135A are angular sectors in

 which the axes 0, 45,
 90 and 135 are
 bisectors,

pnm ,0 ,
4545,nm ,

8990,nm ,
135135,nm are independent

 variables and
0m ,

 pn
45m ,

4 5n ,
90m ,

89n ,

135m ,
135n are

 within]255,255[.

Therefore, the task is to define the complete set of
values for the independent variables in (6), (7), (8)
and (9). To accomplish this task, the following as-
pects must be considered:

1) In order to avoid division by 0 the operation divi-
sion must not be used.

2) The axes for 0, 45, 90 and 135 are further divid-
ed into two pairs. The ingredients of each pair are
orthogonal. Hence, the angular sectors for 45 and
135 are symmetrical with respect to the x-axis.
Therefore

|||| 13545 mm

(10)

and

|||| 13545 nn

(11)

As a result, the difference between 45 and 135 is
based on sign relations.

3) Unlike 45 and 135, the difference between 0 and
90 is defined by the fact that their angular sectors
are symmertrical with respect to axis 45. As a re-
sult, the difference between 0 and 90 is based on
comparison with respect to the boundaries of the
angular sector for 45.

32 CEMA’22 conference, Sofia

3. COMPUTATIONAL MECHANISM IN FPGA

The algorithm includes:

Step #1. Determine all combinations between the
signs of Gyand Gx .

Step #2. Define two reference points: 22.5° and
67.5°.

Step #3. Determine a numerical equivalent to angle
22.5°. The accurate representation of angle 22.5°

is the fraction
239

99 :

239

99
tan

1

 = 22.500605394851°

Step #4. Determine a numerical equivalent to angle
67.5°. The accurate representation of angle 67.5°

is the fraction
70

169:

70

169
tan

1

 = 67.500605394851°.

Step #5. Calculate gradient direction Dir by simul-
taneously executing expressions:

If (0&0 GxGy) or (0&0 GxGy) then

If 239*||99*|| GyGx

0Dir

If

45Dir

If 70*||169*|| GyGx 90Dir

If (0&0 GxGy) or (0&0 GxGy) then

If 239*||99*|| GyGx 0Dir

If 70*||169*||&239*||99*|| GyGxGyGx

135Dir

If 70*||169*|| GyGx 90Dir

If Gy = 0 & Gx ≠ 0 0Dir

If Gy ≠ 0 & Gx = 0 0Dir

If Gy = 0 & Gx = 0 0Dir . (12)

The computational mechanism in FPGA is presen-
ted in Figure 1.

Figure 1. The model of computational mechanism in FPGA

The RTL design of the algorithm is shown in Figure
2.

Figure 2. RTL design of the algorithm (Source: Intel
(Altera) Quartus)

Resource utilization is presented in Table 1.

Table 1. Resource utilization of the proposed algorithm

4. PROVING THE ALGORITHM’S
MATHEMATICAL ACCURACY

Mathematical accuracy is tested for all values of

Gyand Gx in the interval]255,255[. Four sam-

ple test results are presented below.

Check # 1

Gy = -160 Gx = -66

|-66|*99 |-160|*239 (false)

|-66|*99 < |-160|*239 &

|-66|*169 > |-160|*70 (false)

70 * | | 169 * | | & 239 * | | 99 * | | Gy Gx Gy Gx

CEMA’22 conference, Sofia 33

|-66|*169 |-160|*70 (true)

Therefore, 90Dir .

Using the conventional method:

66

160
tan

1

= 67.583852520656°.

Check # 2

Gy = -48 Gx = 55

55*99 |-48|*239 (false)

55*99 < |-48|*239 &

55*169 > |-48|*70 (true)

55*169 |-48|*70 (false).

Therefore, 135Dir .

Using the conventional method:

55

48
tan

1

 =

 - 41.1120904°.

Check # 3

Gy = -19 Gx = -46

|-46|*99 |-19|*239 (true)

|-46|*99 < |-19|*239 &

|-46|*169 > |-19|*70 (false)

|-46|*169 |-19|*70 (false)

Therefore, 0Dir .

Using the conventional method:

46

19
tan

1

 =

22.442753365294°.

Check # 4

Gy = 19 Gx = 45

|45|*99 |19|*239 (false)

|45|*99 < |19|*239 &

|45|*169 > |19|*70 (true)

|45|*169 |19|*70 (false).

Therefore, 45Dir .

Using the conventional method:

45

19
tan

1

 =

22.890551656248°.

Accuracy tests using the entire range of values in

]255,255[provide the data:

1) Total calculated results: 261121

2) Total results different from 0: 260100

3) Total results equal to 0: 1021

4) Distribution of non-zero results:

 direction 0: 65025

 direction 45: 65025

 direction 90: 65025

 direction 135: 65025.

Thus it is proved that the fractions
239

99 and
70

169 are

accurately calculated and the algorithm guarantees
total accuracy.

5. EXPLORING)(tan 1

max IntF AND

)(tan 1

min IntnTclk IN FPGA

Exploration methodology:

 The algorithm is implemented using all val-
ues in]255,255[.

 The obtained results are in Table 2.

 Test results prove the functional capabilities of
the proposed algorithm:

 Total mathematical accuracy

)(tan 1

max IntF
)(max memF for all

values of Gyand Gx

Table 2. Results for)(tan 1

max IntF
 and

)(tan 1

min IntnTclk

 3)(tan 1 constIntnTclk under all test

conditions.

The input data widths 8 bits for both the numera-

tor and denominator in the reference points
239

99

and
70

169 . Because image pixel is within]12,0[8 ,

34 CEMA’22 conference, Sofia

for Cyclone II-V and Stratix I-V,)(tan 1

max IntF is

defined by the maximum operating frequency of

9x9 hard multiplier. For Cyclone,)(tan 1

max IntF

is defined by the maximum operating frequency of
8x8 logic elements based multiplier.

6. CONCLUSION

This paper presents an integer inverse tangent
algorithm. Its application is focused on computing
gradient direction in FPGA based edge detection
which targets ultimate execution speed. The de-
signed algorithm is explored for mathematical accu-
racy, maximum operating frequency and minimum
number of clock cycles in ten Intel (Altera) FPGA
families.

References

[1] A. Ukil, V. H. Shah, and B. Deck, “Fast computation of
arctangent functions for embedded applications: A com-
parative analysis”, 2011 IEEE International Symposium
on Industrial Electronics, 2011, pp. 1206-1211

[2] F. De Dinechin and M. Istoan, “Hardware Implementa-
tions of Fixed-Point Atan2”, 2015 IEEE 22nd Symposi-
um on Computer Arithmetic, 2015, pp. 34-41

[3] Kung, Y.-S., Wu, M.-K., Linh Bui Thi and, H., Jung, T.-
H., Lee, F.-C., and Chen, W.-C., “ FPGA-based hard-
ware implementation of arctangent and arccosine func-
tions for the inverse kinematics of robot manipulator”,
Engineering Computations, Vol. 31 No. 8, 2014, pp.
1679-1690

[4] Luca Pilato, Luca Fanucci, and Sergio Saponara, “Real-
Time and High-Accuracy Arctangent Computation Using
CORDIC and Fast Magnitude Estimation”, Electronics,
2017, pp. 6-22

[5] M. Saber, Y. Jitsumatsu, and T. Kohda, “A low-power
implementation of arctangent function for communica-
tion applications using FPGA”, 2009 Fourth International
Workshop on Signal Design and its Applications in
Communications, 2009, pp. 60-63

[6] Omar Zeyad, “Design and Implement ation Hardware
Architecture for Four–Quadratic Arctangent”, Interna-
tional Journal of Computer Applications, Volume 176 –
No.1, October 2017, pp. 10-13

[7] P. A. Kumar, FPGA “Implementation of the Trigonomet-
ric Functions Using the CORDIC Algorithm”, 2019 5th
International Conference on Advanced Computing &
Communication Systems (ICACCS), 2019, pp. 894-900

[8] Roberto Gutierrez and Javier Valls, “Low-power fpga-
implementation of atan (y/x) using look-up table meth-
ods for communication applications, Journal of Signal
Processing Systems, Volume 56, Issue 1, July 2009, pp.
25–33

[9] R. Gutierrez and J. Valls, “Implementation on FPGA of a
LUT-Based atan(Y/X) Operator Suitable for Synchroni-
zation Algorithms”, 2007 International Conference on
Field Programmable Logic and Applications, 2007, pp.
472-475

[10] R. Gutierrez, V. Torres, and J. Valls, “FPGA-implemen-
tation of atan(Y/X) based on logarithmic transformation
and LUT-based techniques”, Journal of Systems Archi-
tecture, vol. 56, 2010

[11] S. Nandi, S. Prasad, C. M. Ananda, and S. S. Rekha,
“Fixed point implementation of trigonometric function us-
ing Taylor's series and error characterization”, 2016 In-
ternational Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2016, pp.
442-446

[12] S. Rajan, S. Wang, and R. Inkol, “Efficient Approxima-
tions for the Four-Quadrant Arctangent Function”, 2006
Canadian Conference on Electrical and Computer Engi-
neering. IEEE, 2006

	8

