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lar matrices is described. Fault tolerance is achieved

through triplicated computation of the same problem

instance and majority voting.
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I. Introduction

Fault tolerance has become a crucial design require-

ment for VLSI/WSI array processors. Fault tolerance

can be achieved through some form of redundancy,

i.e. either information (ABFT) [1], [2], space and/or

time [3], [4], and by recon�guration. In this paper we

present a systematic approach to design a fault{tolerant

VLSI/WSI SA for matrix multiplication. The method

is based on fault{tolerant (FT) mapping theory which

is developed from space{time mapping technique [5],

[6], [7], and the theory on concurrent error detection

using space/time redundancy [4], [8]. Fault tolerance is

achieved through triplicated computation of the same

problem instance and majority voting. Our mapping al-

gorithm to obtain fault{tolerant systolic array is based

on composition of two linear transformations (H;T ),

contrary to the approach proposed in [4], which uses

only valid transformation matrix T . The total num-

ber of PEs, np, and the total computation time, tc, are

two major performance measures. Therefore we take

their product AT = np � tc as the indicator of the SA

optimality.

II. Background

Let A = (aik) and B = (bkj) be two matrices of order

N1 � N3 and N3 �N2, respectively. In order to design

an optimal fault{tolerant hexagonal SA for computing

C = A � B, three equivalent algorithms, but with dis-

joint index spaces were proposed in [4]. The main idea

in [4] was to achieve fault{tolerance through repeated

computation of the same problem instance. By the pro-

posed method any single error at any given time can be

detected and corrected. The common description of all

three algorithms is as follows

Algorithms 1

for r := 0 to 2 do
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For r = 0; 1; 2 three equivalent algorithms with dis-

joint index spaces are obtained. The initial values

in Algorithms 1 are given by a(i � 2r
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The computational structures of the above matrix

multiplication algorithms are determined by the inner

computation spaces
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the computational structure (D;Pint(r)) is mapped into

fault{tolerant SA, i.e.

T : (D;Pint(r)) 7�! (�; �Pint(r)); (3)

where �Pint(r) = f(t; x; y)g. Here t represents the time

when computation is performed, while (x; y) denotes

the coordinates of the PE were the computation is

taking place. Both refer to the index point (i; j; k).

Note that several valid transformations T that map

(D;Pint(r)) into (�; �Pint(r)), can be generated. For

T de�ned by (2), the (x; y) positions of PEs in the SA

are given by�
x

y

�
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�
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�
; (~p 2 Pint(r)) (4)



while time schedule, t, is determined according to

t = t(i �
2r
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The communication links between the PEs are imple-

mented along the projections of data dependency vec-

tors, i.e.
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The array obtained according to (4), (5) and (6) has

the following features:

� number of PEs: np = N1(N2 � 1) + N2(N3 + 1) +

N3(N1 + 1)� 1,

� computation time: tc = N1 +N2 + N3 � 2,

� AT factor: AT = np� tc = [N1(N2�1)+N2(N3+

1) + N3(N1 + 1) � 1][N1 + N2 +N3 � 2].

For the case N1 = N2 = N3 = N the following is ob-

tained [4]:

np = 3N2 +N � 1; tc = 3N � 2;

AT = (3N2 + N � 1)(3N � 2) = O(9N3) (7)

The corresponding SA that implements fault{

tolerant matrix multiplication for N1 = N2 = N3 = 3

is shown in Fig.1. This array is referred to as optimal

fault-tolerant SA with respect to AT factor in [4].

Fig. 1. Data 
ow in the SA during fault-tolerant matrix multi-
plication for N1 = N2 = N3 = 3, obtained in [4].

III. Our approach to mapping matrix

multiplication algorithm onto FT SA

This section describes a modi�cation of the method

given in [4] to synthesize a hexagonal SA which imple-

ments fault{tolerant matrix multiplication with mini-

mal number of PEs with respect to the problem size.

To achieve this, we apply some linear mappings that

accommodate the inner computation space Pint(r) to

the projection direction ~� = [1 1 1]T prior to the map-

ping de�ned by (3). The accommodation of Pint(r)

can be performed both on index variable i and j. The

choice depends on the relation between N1 and N2 (i.e.

N1 > N2 or N1 < N2). When N1 = N2 both accom-

modations are equally pro�table.

We will �rst consider the case when N1 > N2, i.e.

when accommodation is performed on the index vari-

able i. In this case, instead of Algorithms 1, we consider

Algorithms 2
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3
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cij. Note that computations in Algorithms 2 satisfy

all the conditions given in [4] to perform fault{tolerant

matrix multiplication. The inner computation spaces

of Algorithms 2 are given by

Pint(r) = f(i+ r

3
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The data dependency matrix is the same as for Al-

gorithms 1, i.e. as one given by (1).

The accommodation of Pint(r) to the direction ~� =

[1 1 1]T over index variable i is performed by linear map-

ping H = (F;G) (see for example [6], [7]) according to

H : Pint(r) 7�! P �

int
(r); i.e. ~p � = F � ~p+G (8)
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for each 0 � r � 2; 1 � i � N1; 1 � j � N2; 1 �

k � N3. The SA that implements fault{tolerant matrix

multiplication is obtained by the following mapping

T : (D;P �

int
(r)) 7�! (�; �Pint(r)); (11)
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Note that transformation matrix T is not the same as

one given by (2). Namely, under the conditions de�ned

in [6], the transformation T given by (2) is no more

valid, since it would generate SA with bad spatial fea-

tures.

The (x; y) coordinates of the PEs in the SA are de-
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for each 0 � r � 2; 1 � i � N1; 1 � j � N2; 1 � k �

N3. The obtained SA has the following features

np = N3(N2 + 2); tc = 3N1 + N2 + N3 � 4;

AT = N3(N2 + 2)(3N1 + N2 + N3 � 4) (13)

For N1 = N2 = N3 = N we have

np = N (N + 2); tc = 5N � 4;

AT = N (N + 2)(5N � 4) = O(5N3): (14)

When N1 < N2 accommodation of Pint(r) is per-

formed over index variable j. Now, we start from the

following algorithm

Algorithms 3
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Data dependency matrix is the same as one given

by (1). The accommodation of Pint(r) to the direction

~� = [1 1 1]T over index variable j, is performed by linear

mapping of type (8), with H = (F;G) being de�ned as

[6], [7]:
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for each 0 � r � 2; 1 � i � N1; 1 � j � N2; 1 � k �

N3. It is not hard to see that for mapping H = (F;G)

de�ned by (15), the transformation T given by (12) is no
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for each 0 � r � 2; 1 � i � N1; 1 � j � N2; 1 � k �

N3.

The obtained array has the following features

np = N3(N1 + 2); tc = N1 + 3N2 + N3 � 4;

AT = N3(N1 + 2)(N1 + 3N2 + N3 � 4):

As we have already mentioned depending on the re-

lation between N1 and N2, we can choose between Al-

gorithms 2 and Algorithms 3 as a starting point for the

synthesis procedure. Accordingly, we conclude that a

hexagonal SA for fault{tolerant matrix multiplication

has the following characteristics

np = N3(minfN1; N2g+ 2);

tc = (3maxfN1; N2g+minfN1; N2g+ N3 � 4)

AT = N3(minfN1; N2g+ 2)(3maxfN1; N2g

+minfN1; N2g+ N3 � 4):

For a given problem size this array has minimal pos-

sible number of PEs needed to perform fault{tolerant

matrix multiplication. Compared to the array obtained

in [4], the number of PEs is reduced almost three

times, AT measure two times, while the total execu-

tion time is only slightly increased. Data 
ow in this

array during fault{tolerant matrix multiplication for

N1 = N2 = N3 = 3 is diagrammed in Fig _2. A detail

concerning the voting mechanism is sketched in Fig.3.

Figure 3. depicts only the processing elements at the

boundary of fault-tolerant SA, since only the �nal re-

sults are subjects in the voting process. Note that each

multiplexer (MUX) takes data from three di�erent PEs

at three di�erent cycles. The inputs are selected in

"round robin" manner starting from input 0. Control

signals for all multiplexers are unique. Each voter takes

three results to vote. There are [N+2
3

] � 3 multiplexers

and [N+2
3

] voters. By the proposed scheme a single per-

manent or temporary faults can be tolerated. A number

of multiple fault patterns can be tolerated also, pro-

vided that faults do not a�ect the same element of the

resulting matrix. Fault detection and location are not

necessary for fault-tolerance, errors are masked concur-

rently with normal operation of the systolic array.

IV. Conclusion

We have described a method to synthesize optimal

fault{tolerant SA for matrix multiplication with min-

imal hardware overhead. The array is optimal in the

sense of the product of computation time and number

of PEs required. The fault tolerance is achieved through

triplicated computation of the same problem instance

followed by the majority voting. A single permanent

and temporary faults and a number of multiple fault

patterns can be tolerated by the proposed scheme.

Fig. 2. Data 
ow in the SA synthesized by the described pro-
cedure during fault{tolerant matrix multiplication for N1 =
N2 = N3 = 3.

Fig. 3. A detail of the voting process.
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