

291

On the Performance Potential of Speculative Execution
based on Branch and Value Prediction

Pece J. Mitrevski1 and Marjan K. Gušev2

Abstract – Fluid Stochastic Petri Nets are used to capture the

dynamic behavior of an ILP processor, and discrete-event
simulation is applied to assess the performance potential of
predictions and speculative execution in boosting the
performance of ILP processors that fetch, issue, execute and
commit a large number of instructions per cycle.

 Keywords – Instruction Level Parallelism, Speculative
Execution, Branch Prediction, Value Prediction, Fluid Stochastic
Petri Nets.

I. INTRODUCTION

Current microprocessor architectures assume sequential
programs as an input and a parallel execution model. Their
efficiency is highly dependent on the Instruction-Level
Parallelism (ILP) the programs exhibit, as a measure of the
potential number of instructions that can be executed
simultaneously. Basically, there are two fundamental
approaches to executing multiple instructions in parallel: the
superscalar processor and the VLIW (Very Long Instruction
Word) processor. The superscalar approach extracts the
parallelism from a sequential program at run time
(dynamically), by employing sophisticated hardware
mechanisms. On the other hand, the performance of VLIW
architectures is dependent on the capability of the compiler to
detect and exploit instruction-level parallelism during
instruction scheduling using advanced (static) techniques.

Regardless of the approach used, instructions cannot always
be eligible for parallel execution due to three classes of
constraints: control dependences, true data dependences and
name (false) dependences [5]. Control dependences appear
when the execution of instructions depends on the outcome of
a branch (either conditional or unconditional). The resolution
of the outcome involves deciding whether the branch is taken
or not (in the case of conditional branch) and computing its
target address. Control dependent instructions cannot even
begin their execution because the branch outcome should
determine the next sequence of instructions to be executed.
True data dependences occur when an instruction consumes a
value that is generated by a preceding instruction, and
therefore these instructions cannot be executed in parallel.
Name dependences occur when instructions use the same
register or memory location (name), but there is no flow of
data between them as in true data dependences.

1Pece J. Mitrevski is with the Faculty of Technical Sciences, Ivo Lola
Ribar bb, 7000 Bitola, Macedonia, E-mail: pece.mitrevski@uklo.edu.mk

2Marjan K. Gušev is with the Faculty of Natural Sciences and
Mathematics, Arhimedova bb, 1000 Skopje, Macedonia, E-mail:
marjan@ii.edu.mk

Many ILP processors speculatively execute control dependent

instructions before resolving the branch outcome. They rely upon
branch prediction in order to tolerate the effect of control
dependences. A branch predictor uses the current fetch address to
predict whether a branch will be fetched in the current cycle,
whether that branch will be taken or not, and what the target
address of the branch is. The predictor uses this information to
decide where to fetch from in the next cycle. Since the branch
execution penalty is only seen if the branch was mispredicted, a
highly accurate branch predictor is a very important mechanism
for reducing the branch penalty in a high performance ILP
processor.

Given that a majority of static instructions exhibit very little
variations in values that they produce/consume during the course
of a program’s execution, data dependences can be eliminated at
run-time by predicting the outcome values of instructions (value
prediction) and by executing the true data dependent instructions.
In general, the outcome value of an instruction can be assigned to
registers, memory locations, condition codes, etc. The execution is
speculative, as it is not assured that consumer-instructions were
fed with correct input values. Since the correctness of the
execution must be maintained, speculatively executed instructions
retire only if the predictions they rely upon were proven correct –
otherwise, they are discarded and reissued with the correct values.

II. MOTIVATION AND RELATED WORK

The aim of a plethora of works has been studying the limits of

ILP, i.e. the influence that predictions and speculative execution
have on ILP processor performance under different scenarios
(microarchitectural features): instruction fetch bandwidth,
prediction accuracy, available resources, instruction window size,
issue width, etc. More or less, they all rely upon the use of
microarchitectural simulators [1, 4]. An alternative is the
analytical modeling approach – a set of formulas or equations
describe the system, and manipulating or solving the equations
leads to results that describe the system behavior. In simpler cases,
equations can be solved to get a closed-form answer, but more
often, a numerical solution needs to be carried out. Analytical
models are generally more of an abstraction of the system than the
microarchitecture models used in simulators. Nevertheless, the
models published so far do not even distantly capture the dynamic
behavior of an ILP processor with speculative execution based on
predictions. Only a few deterministic models are known [3, 6, 8] –
they deal with average parameter values (or a parameter takes
only one value), there is no randomness and the result is based on
known functions of inputs with no dependence on chance. Some
authors [6] point out that these models provide some insight by
isolating important parameters, but they are still too simple to
capture the behavior of a real system.

292

Opposed to this common trait, a stochastic model of the
dynamic behavior of an ILP processor that aims to minimize
the impact of control and true-data dependences and employs
speculative execution based on branch and value prediction,
has been introduced for the first time in [7]. In view of the fact
that in a machine with multiple execution units capable to
execute large number of instructions in parallel the service
and storage requirements of each instruction are small
compared to the total volume of the instruction stream,
individual instructions are regarded as atoms of a fluid and
large buffer levels are approximated by continuous fluid
levels. As a result, state-space complexity is decreased. The
dynamic behavior model is built using Fluid Stochastic Petri
Nets (FSPN) [9] and the stochastic process underlying the
Petri Net is described by a system of first-order hyperbolic
partial differential equations with appropriately chosen initial
and boundary conditions.

In this paper, we present performance evaluation results
obtained using discrete-event simulation [2] of a slightly
modified FSPN model, in order to better understand branch and
value prediction techniques and their performance potential with
varying machine width.

III. THE FSPN MODEL

FSPNs contain two types of places: discrete places
containing a non-negative integer number of tokens, and
continuous places containing fluid (non-negative real
quantity). Transition firings are determined by both discrete
and continuous places, and fluid flow is permitted either with
deterministic fluid rates through the enabled timed transitions,
or in the form of fluid jumps (transportation of fluid in zero
time) through enabled immediate transitions in the Petri Net.
From the FSPN point of view, despite the microarchitectural
complexity, fairly simple concept lies beneath the dynamic
behavior model: instructions flow and pass through separate
pipeline stages connected by buffers. Control dependences
stall the inflow of useful instructions (fluid) into the pipeline,
whereas true data dependences decrease the aperture of the
pipeline and the outflow rate. The buffer levels always vary
and affect both the inflow and outflow rates. The speculative
execution based on branch prediction tends to eliminate stalls
in the inflow, while the speculative execution based on value
prediction helps keeping the outflow rate as high as possible.

Based on the assumption that the pipeline is organized in,
more or less, four stages – Fetch, Decode/Issue, Execute and
Commit, fluid places PIC, PIB, PRS/LSQ, PROB, PRR, PEX and PREG,
depicted by means of two concentric circles (Fig. 1), represent
buffers between pipeline stages – instruction cache,
instruction buffer, reservation stations & load/store queue,
reorder buffer, rename registers, instructions that have
completed execution and architectural registers. The fluid
place PTIME has the function of an hourglass: it is constantly
filled at rate 1 up to the level 1 and then flushed out, which
corresponds to the machine clock cycle. Fluid arcs are drawn
as double arrows to suggest a pipe. Flow rates are piecewise
constant, i.e. take different values at the beginning of each
cycle and are limited by the fetch/issue width of the machine
(W). Rates depend on fluid levels and change when TCLOCK

fires and the fluid in PTIME is flushed out. The flush-out arc is
drawn as thick single arrow. A high-bandwidth instruction
fetch mechanism fetches up to W instructions per cycle with
rate FETCHr and places them in the instruction buffer. In the
case of a branch misprediction, the fetch unit is effectively
stalled and no useful instructions are added to the buffer.
Instruction cache misses are ignored. Instruction issue tries to
send W instructions to the appropriate reservation stations or
the load/store queue on every clock cycle. The actual issue
rate is ISSUEr . Rename registers are allocated to hold the results
of the instructions and reorder buffer entries are allocated to
ensure in-order completion. Among the instructions that
initiate execution in the same cycle, speculatively executed
consumer-instructions are forced to retain their reservation
stations. Up to W instructions are in execution at the same
time. With the assumption that functional units are always
available and out-of-order execution is allowed, the
instructions initiate and complete execution with rate

COMPLETEINITIATE rr = . During the execute stage, the instructions
first check to see if their source operands are available
(predicted or computed). For simplicity, the execution latency
of each instruction is a single cycle. Instructions execute and
forward their own results back to subsequent instructions that
might be waiting for them (no result forwarding delay). Every
reference to memory is present in the first-level cache – the
effect of the memory hierarchy is eliminated. The instructions
that have completed execution are ready to move to the last
stage. Up to W instructions may commit per cycle. The results
in the rename registers are written into the register file and the
rename registers and reorder buffer entries freed with rate

COMMITr .
Initially, tokens occur in places PFETCH and PINITIATE, while

the fluid place PIC is filled with fluid with volume V,
equivalent to the total number of useful instructions (program
volume). Firing of exponential transition TBRANCH corresponds
to a branch instruction occurrence. The parameter λ changes
at the beginning of each clock cycle and depends on the fetch
rate: WrFETCHi /⋅= λλ , where iλ is its upper limit at
maximum fetch rate (rFETCH=W). The branch is correctly
predicted with probability 1-pBMIS, or mispredicted with
probability pBMIS. These probabilities are included in the FSPN
model as weights assigned to immediate transitions TBPC and
TBPMIS, respectively. This is known as synthetic branch
prediction. Branch mispredictions stall the fluid inflow for as
many cycles as necessary to resolve the branch (CBR tokens in
place PBMIS). Usually, a branch is not resolved until its
execution stage (CBR=3). With several consecutive firings of
TCLOCK, these tokens are consumed one at a time and moved to
PRESOLVED. As soon as the branch is resolved, transition
TCONTINUE fires, a token appears in place PFETCH and the inflow
resumes. Similarly, firing of exponential transition TCONSUMER
corresponds to the occurrence of a consumer-instruction
among the instructions that initiated execution. The parameter
µ changes at the beginning of each clock cycle and depends
on the initiation rate: WrINITIATEi /⋅= µµ , where iµ is its
upper limit when maximum possible number of instructions
simultaneously initiate execution (rINITIATE=W).

293

λ1-pBMIS

pBMIS

rFETCHrFETCH

1

1

rISSUErISSUE rISSUE

rINITIATE

rCOMPLETE

rCOMMITrCOMMITrCOMMIT

rISSUE

PFETCH

PRS/LSQ

PRR PROB

PEX

PREG

PIC PIB

TREEXECUTE

TENDTEND

TEND

TEND

TEND

PBRANCH

TBPMIS

TCOUNT

TBPC

TCONTINUE

PBMIS

µ

pVMIS

PINITIATE

PCONSUMER

TCONSUMER

TVPMIS

1-pVMIS

TVPC

PVMIS

PRESOLVED

TBRANCH

TISSUE

TEXECUTE

TCOMMIT

rCOMMIT

TCLOCK

1 1
PTIMETTIME

if Z =1TIME

if Z =1TIME

()if Z =V AND Z =1REG TIME

Fig. 1. A Fluid Stochastic Petri Net Model

The consumed value was correctly predicted with

probability 1-pVMIS, or mispredicted with probability pVMIS.
These probabilities are included in the FSPN model as
weights assigned to immediate transitions TVPC and TVPMIS,
respectively. Whenever a misprediction occurs (token in place
PVMIS), the consumer-instruction has to be rescheduled for
execution. The firing of immediate transition TREEXECUTE
causes transportation of fluid in zero time. Fluid jumps have
deterministic height of 1 (one instruction). Jumps that would
go beyond the boundaries cannot be carried out. The arcs
connecting fluid places and immediate transitions are drawn
as thick single arrows. The fluid flow terminates at the end of
the cycle when all the fluid places except PREG are empty and
TEND fires.

IV. PERFORMANCE EVALUATION RESULTS

We investigate branch and value prediction efficiency with
varying machine width (Figs. 2 and 3). The results have been
obtained using discrete-event simulation, specifically
implemented for this model and not for a general FSPN. The
types of events that need to be scheduled in the event queue
are either transition firings or the hitting of a threshold
dependent on fluid levels. We have used a Unif[0,1] pseudo-
random number generator to generate samples from the
respective cumulative distribution functions and determine
firing times of timed transitions via inversion of the cdf
(“Golden Rule for Sampling”). In the case of branch
prediction (Fig. 2), the speedup is computed by dividing the
IPC achieved in a machine over the IPC achieved in a scalar
counterpart (W=1, µi=0). Program volume is set to V=106

instructions. The speedup due to branch prediction is
obviously higher in wider machines. With perfect branch
prediction, the speedup unconditionally increases with the
machine width. For a given width, the speedup is higher when
there are a smaller number of consuming instructions (low

Wi /µ). With realistic branch prediction, there is a threshold
effect on the machine width: below the threshold the speedup
increases with the machine width, whereas above the
threshold the speedup is close to a limit – machine width is by
far larger than the average number of instructions provided by
the fetch unit. The threshold decreases with increasing the
number of mispredicted branches. This is in agreement with
the results reported in [6] where a threshold effect on the
instruction fetch rate was exposed.

The maximum additional speedup that value prediction can
provide is computed by dividing the IPC achieved with
perfect value prediction over the IPC achieved without value
prediction (Fig. 3). With perfect branch prediction, some true
data dependences can always be eliminated, regardless of the
machine width. Actually, the maximum additional speedup is
predetermined by the ratio)/(iWW µ− . However, with
realistic branch prediction, the additional speedup diminishes
when the machine width is above a threshold value. It happens
earlier when there are a smaller number of consuming
instructions and/or a larger number of mispredicted branches.
In either case, the number of independent instructions
examined for simultaneous execution is sufficiently higher
than the number of fetched instructions that enter the
instruction window. Obviously, branch prediction becomes
more important with wider processors.

294

4

16 64

25
6

10
24

40
96

0
20
40
60
80

100
120
140
160

Sp
ee

du
p

W

λi=W/4, µi=W/2, 1-pVMISi=0

1-pBMISi=0.90
1-pBMISi=0.94
1-pBMISi=0.98
1-pBMISi=1

254 510 1012 2004

(a)

4

16 64

25
6

10
24

40
96

0
20
40
60
80

100
120
140
160

Sp
ee

du
p

W

λi=W/8, µi=7W/8, 1-pVMISi=0

1-pBMISi=0.90
1-pBMISi=0.94
1-pBMISi=0.98
1-pBMISi=1

253 500

(b)

Fig. 2. Speedup achieved by branch prediction with varying
machine width

4

16 64

25
6

10
24

40
96

0

0.5

1

1.5

2

A
dd

iti
on

al
 s

pe
ed

up

W

λi=W/4, µi=W/2, 1-pVMISi=1

1-pBMISi=0.90
1-pBMISi=0.94
1-pBMISi=0.98
1-pBMISi=1

(a)

4

16 64

25
6

10
24

40
96

0
1
2
3
4
5
6
7
8

A
dd

iti
on

al
 s

pe
ed

up

W

λi=W/8, µi=7W/8, 1-pVMISi=1

1-pBMISi=0.90
1-pBMISi=0.94
1-pBMISi=0.98
1-pBMISi=1

(b)

Fig. 3. Maximum additional speedup achieved by perfect
value prediction with varying machine width

V. CONCLUSION

The main conclusions that can be drawn from this study are

the following:
• The benefits of branch and value prediction are higher

when control and true data dependences have a much
higher influence on the total execution time of a
program;

• Value prediction is an effective approach that might
enable higher levels of parallelism without the need to
increase machine width;

• There is a correlation between the value prediction
efficiency and the branch prediction efficiency;

• The wider the machine, the more significant
performance limitation the branch mispredictions
become.

REFERENCES

[1] D. Burger, T. M. Austin, “The SimpleScalar Tool Set,

Version 2.0”, University of Wisconsin – Madison, CSD,
Technical Report #1342, 1997

[2] G. Ciardo, D. Nicol, K. Trivedi, “Discrete-Event Simulation
of FSPNs”, Proc. of the 7th Int. Workshop on Petri Nets and
Performance Models, pp. 217-225, Saint Malo, France, 1997

[3] F. Gabbay, A. Mendelson, “Using Value Prediction to

Increase the Power of Speculative Execution Hardware”,
ACM Trans. on Computer Systems, 16(3), pp. 234-270, 1998

[4] M. Gušev, G. Popovski, A. Mišev, “Simulation of
Superscalar Processor”, Proc. of the 20th Int. Conf. on
Information Technology Interfaces, Pula, Croatia, 1998

[5] J. L. Hennessy, D. A. Patterson, “Computer Architecture: A
Quantitative Approach”, Second Edition, Morgan
Kaufmann Publishers, San Francisco, USA, 1996

[6] P. Michaud, A. Seznec, S. Jourdan, “Exploring Instruction-
Fetch Bandwidth Requirement in Wide-Issue Superscalar
Processors”, Proc. of the Int. Conf. on Parallel Architectures
and Compilation Techniques, Newport Beach, USA, 1999

[7] P. Mitrevski, M. Gušev, “Modeling the Dynamic Behavior
of an ILP Processor”, Proc. of the 23rd International
Conference on Information Technology Interfaces, pp. 69-
74, Pula, Croatia, 2001

[8] Y. Sazeides, “An Analysis of Value Predictability and its
Application to a Superscalar Processor“, PhD Thesis,
University of Wisconsin-Madison, 1999

[9] K. Trivedi, V. Kulkarni, “FSPNs: Fluid Stochastic Petri
Nets”, Lecture Notes in Computer Science, Vol. 691,
M.Ajmone Marsan (ed.), Proc. of the 14th Int. Conf. on
Applications and Theory of Petri Nets, pp. 24-31,
Heidelberg, Germany, 1993

	Back to CS session
	Main menu

