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based on Branch and Value Prediction 

                              
Pece J. Mitrevski1 and Marjan K. Gušev2

 
Abstract – Fluid Stochastic Petri Nets are used to capture the 

dynamic behavior of an ILP processor, and discrete-event 
simulation is applied to assess the performance potential of 
predictions and speculative execution in boosting the 
performance of ILP processors that fetch, issue, execute and 
commit a large number of instructions per cycle.  
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Execution, Branch Prediction, Value Prediction, Fluid Stochastic 
Petri Nets. 
               

I. INTRODUCTION 
                                      

Current microprocessor architectures assume sequential 
programs as an input and a parallel execution model. Their 
efficiency is highly dependent on the Instruction-Level 
Parallelism (ILP) the programs exhibit, as a measure of the 
potential number of instructions that can be executed 
simultaneously. Basically, there are two fundamental 
approaches to executing multiple instructions in parallel: the 
superscalar processor and the VLIW (Very Long Instruction 
Word) processor. The superscalar approach extracts the 
parallelism from a sequential program at run time 
(dynamically), by employing sophisticated hardware 
mechanisms. On the other hand, the performance of VLIW 
architectures is dependent on the capability of the compiler to 
detect and exploit instruction-level parallelism during 
instruction scheduling using advanced (static) techniques. 

Regardless of the approach used, instructions cannot always 
be eligible for parallel execution due to three classes of 
constraints: control dependences, true data dependences and 
name (false) dependences [5]. Control dependences appear 
when the execution of instructions depends on the outcome of 
a branch (either conditional or unconditional). The resolution 
of the outcome involves deciding whether the branch is taken 
or not (in the case of conditional branch) and computing its 
target address. Control dependent instructions cannot even 
begin their execution because the branch outcome should 
determine the next sequence of instructions to be executed. 
True data dependences occur when an instruction consumes a 
value that is generated by a preceding instruction, and 
therefore these instructions cannot be executed in parallel. 
Name dependences occur when instructions use the same 
register or memory location (name), but there is no flow of 
data between them as in true data dependences.  
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Many ILP processors speculatively execute control dependent 

instructions before resolving the branch outcome. They rely upon 
branch prediction in order to tolerate the effect of control 
dependences. A branch predictor uses the current fetch address to 
predict whether a branch will be fetched in the current cycle, 
whether that branch will be taken or not, and what the target 
address of the branch is. The predictor uses this information to 
decide where to fetch from in the next cycle. Since the branch 
execution penalty is only seen if the branch was mispredicted, a 
highly accurate branch predictor is a very important mechanism 
for reducing the branch penalty in a high performance ILP 
processor.  

Given that a majority of static instructions exhibit very little 
variations in values that they produce/consume during the course 
of a program’s execution, data dependences can be eliminated at 
run-time by predicting the outcome values of instructions (value 
prediction) and by executing the true data dependent instructions. 
In general, the outcome value of an instruction can be assigned to 
registers, memory locations, condition codes, etc. The execution is 
speculative, as it is not assured that consumer-instructions were 
fed with correct input values. Since the correctness of the 
execution must be maintained, speculatively executed instructions 
retire only if the predictions they rely upon were proven correct – 
otherwise, they are discarded and reissued with the correct values. 
 

II. MOTIVATION AND RELATED WORK 
       
The aim of a plethora of works has been studying the limits of 

ILP, i.e. the influence that predictions and speculative execution 
have on ILP processor performance under different scenarios 
(microarchitectural features): instruction fetch bandwidth, 
prediction accuracy, available resources, instruction window size, 
issue width, etc. More or less, they all rely upon the use of 
microarchitectural simulators [1, 4]. An alternative is the 
analytical modeling approach – a set of formulas or equations 
describe the system, and manipulating or solving the equations 
leads to results that describe the system behavior. In simpler cases, 
equations can be solved to get a closed-form answer, but more 
often, a numerical solution needs to be carried out. Analytical 
models are generally more of an abstraction of the system than the 
microarchitecture models used in simulators. Nevertheless, the 
models published so far do not even distantly capture the dynamic 
behavior of an ILP processor with speculative execution based on 
predictions. Only a few deterministic models are known [3, 6, 8] – 
they deal with average parameter values (or a parameter takes 
only one value), there is no randomness and the result is based on 
known functions of inputs with no dependence on chance. Some 
authors [6] point out that these models provide some insight by 
isolating important parameters, but they are still too simple to 
capture the behavior of a real system. 
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Opposed to this common trait, a stochastic model of the 
dynamic behavior of an ILP processor that aims to minimize 
the impact of control and true-data dependences and employs 
speculative execution based on branch and value prediction, 
has been introduced for the first time in [7]. In view of the fact 
that in a machine with multiple execution units capable to 
execute large number of instructions in parallel the service 
and storage requirements of each instruction are small 
compared to the total volume of the instruction stream, 
individual instructions are regarded as atoms of a fluid and 
large buffer levels are approximated by continuous fluid 
levels. As a result, state-space complexity is decreased. The 
dynamic behavior model is built using Fluid Stochastic Petri 
Nets (FSPN) [9] and the stochastic process underlying the 
Petri Net is described by a system of first-order hyperbolic 
partial differential equations with appropriately chosen initial 
and boundary conditions. 

In this paper, we present performance evaluation results 
obtained using discrete-event simulation [2] of a slightly 
modified FSPN model, in order to better understand branch and 
value prediction techniques and their performance potential with 
varying machine width. 
 

III. THE FSPN MODEL 
                                      

FSPNs contain two types of places: discrete places 
containing a non-negative integer number of tokens, and 
continuous places containing fluid (non-negative real 
quantity). Transition firings are determined by both discrete 
and continuous places, and fluid flow is permitted either with 
deterministic fluid rates through the enabled timed transitions, 
or in the form of fluid jumps (transportation of fluid in zero 
time) through enabled immediate transitions in the Petri Net. 
From the FSPN point of view, despite the microarchitectural 
complexity, fairly simple concept lies beneath the dynamic 
behavior model: instructions flow and pass through separate 
pipeline stages connected by buffers. Control dependences 
stall the inflow of useful instructions (fluid) into the pipeline, 
whereas true data dependences decrease the aperture of the 
pipeline and the outflow rate. The buffer levels always vary 
and affect both the inflow and outflow rates. The speculative 
execution based on branch prediction tends to eliminate stalls 
in the inflow, while the speculative execution based on value 
prediction helps keeping the outflow rate as high as possible.  

Based on the assumption that the pipeline is organized in, 
more or less, four stages – Fetch, Decode/Issue, Execute and 
Commit, fluid places PIC, PIB, PRS/LSQ, PROB, PRR, PEX and PREG, 
depicted by means of two concentric circles (Fig. 1), represent 
buffers between pipeline stages – instruction cache, 
instruction buffer, reservation stations & load/store queue, 
reorder buffer, rename registers, instructions that have 
completed execution and architectural registers. The fluid 
place PTIME has the function of an hourglass: it is constantly 
filled at rate 1 up to the level 1 and then flushed out, which 
corresponds to the machine clock cycle. Fluid arcs are drawn 
as double arrows to suggest a pipe. Flow rates are piecewise 
constant, i.e. take different values at the beginning of each 
cycle and are limited by the fetch/issue width of the machine 
(W). Rates depend on fluid levels and change when TCLOCK 

fires and the fluid in PTIME is flushed out. The flush-out arc is 
drawn as thick single arrow. A high-bandwidth instruction 
fetch mechanism fetches up to W instructions per cycle with 
rate FETCHr  and places them in the instruction buffer. In the 
case of a branch misprediction, the fetch unit is effectively 
stalled and no useful instructions are added to the buffer. 
Instruction cache misses are ignored. Instruction issue tries to 
send W instructions to the appropriate reservation stations or 
the load/store queue on every clock cycle. The actual issue 
rate is ISSUEr . Rename registers are allocated to hold the results 
of the instructions and reorder buffer entries are allocated to 
ensure in-order completion. Among the instructions that 
initiate execution in the same cycle, speculatively executed 
consumer-instructions are forced to retain their reservation 
stations. Up to W instructions are in execution at the same 
time. With the assumption that functional units are always 
available and out-of-order execution is allowed, the 
instructions initiate and complete execution with rate 

COMPLETEINITIATE rr = . During the execute stage, the instructions 
first check to see if their source operands are available 
(predicted or computed). For simplicity, the execution latency 
of each instruction is a single cycle. Instructions execute and 
forward their own results back to subsequent instructions that 
might be waiting for them (no result forwarding delay). Every 
reference to memory is present in the first-level cache – the 
effect of the memory hierarchy is eliminated. The instructions 
that have completed execution are ready to move to the last 
stage. Up to W instructions may commit per cycle. The results 
in the rename registers are written into the register file and the 
rename registers and reorder buffer entries freed with rate 

COMMITr .  
Initially, tokens occur in places PFETCH and PINITIATE, while 

the fluid place PIC is filled with fluid with volume V, 
equivalent to the total number of useful instructions (program 
volume). Firing of exponential transition TBRANCH corresponds 
to a branch instruction occurrence. The parameter λ  changes 
at the beginning of each clock cycle and depends on the fetch 
rate: WrFETCHi /⋅= λλ , where iλ  is its upper limit at 
maximum fetch rate (rFETCH=W). The branch is correctly 
predicted with probability 1-pBMIS, or mispredicted with 
probability pBMIS. These probabilities are included in the FSPN 
model as weights assigned to immediate transitions TBPC and 
TBPMIS, respectively. This is known as synthetic branch 
prediction. Branch mispredictions stall the fluid inflow for as 
many cycles as necessary to resolve the branch (CBR tokens in 
place PBMIS). Usually, a branch is not resolved until its 
execution stage (CBR=3). With several consecutive firings of 
TCLOCK, these tokens are consumed one at a time and moved to 
PRESOLVED. As soon as the branch is resolved, transition 
TCONTINUE fires, a token appears in place PFETCH and the inflow 
resumes. Similarly, firing of exponential transition TCONSUMER 
corresponds to the occurrence of a consumer-instruction 
among the instructions that initiated execution. The parameter 
µ  changes at the beginning of each clock cycle and depends 
on the initiation rate: WrINITIATEi /⋅= µµ , where iµ  is its 
upper limit when maximum possible number of instructions 
simultaneously initiate execution (rINITIATE=W).  
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Fig. 1. A Fluid Stochastic Petri Net Model 
 
The consumed value was correctly predicted with 

probability 1-pVMIS, or mispredicted with probability pVMIS. 
These probabilities are included in the FSPN model as 
weights assigned to immediate transitions TVPC and TVPMIS, 
respectively. Whenever a misprediction occurs (token in place 
PVMIS), the consumer-instruction has to be rescheduled for 
execution. The firing of immediate transition TREEXECUTE 
causes transportation of fluid in zero time. Fluid jumps have 
deterministic height of 1 (one instruction). Jumps that would 
go beyond the boundaries cannot be carried out. The arcs 
connecting fluid places and immediate transitions are drawn 
as thick single arrows. The fluid flow terminates at the end of 
the cycle when all the fluid places except PREG are empty and 
TEND fires. 
 

IV. PERFORMANCE EVALUATION RESULTS 
 

We investigate branch and value prediction efficiency with 
varying machine width (Figs. 2 and 3). The results have been 
obtained using discrete-event simulation, specifically 
implemented for this model and not for a general FSPN. The 
types of events that need to be scheduled in the event queue 
are either transition firings or the hitting of a threshold 
dependent on fluid levels. We have used a Unif[0,1] pseudo-
random number generator to generate samples from the 
respective cumulative distribution functions and determine 
firing times of timed transitions via inversion of the cdf 
(“Golden Rule for Sampling”). In the case of branch 
prediction (Fig. 2), the speedup is computed by dividing the 
IPC achieved in a machine over the IPC achieved in a scalar 
counterpart (W=1, µi=0). Program volume is set to V=106 

instructions. The speedup due to branch prediction is 
obviously higher in wider machines. With perfect branch 
prediction, the speedup unconditionally increases with the 
machine width. For a given width, the speedup is higher when 
there are a smaller number of consuming instructions (low 

Wi /µ ). With realistic branch prediction, there is a threshold 
effect on the machine width: below the threshold the speedup 
increases with the machine width, whereas above the 
threshold the speedup is close to a limit – machine width is by 
far larger than the average number of instructions provided by 
the fetch unit. The threshold decreases with increasing the 
number of mispredicted branches. This is in agreement with 
the results reported in [6] where a threshold effect on the 
instruction fetch rate was exposed. 

The maximum additional speedup that value prediction can 
provide is computed by dividing the IPC achieved with 
perfect value prediction over the IPC achieved without value 
prediction (Fig. 3). With perfect branch prediction, some true 
data dependences can always be eliminated, regardless of the 
machine width. Actually, the maximum additional speedup is 
predetermined by the ratio )/( iWW µ− . However, with 
realistic branch prediction, the additional speedup diminishes 
when the machine width is above a threshold value. It happens 
earlier when there are a smaller number of consuming 
instructions and/or a larger number of mispredicted branches. 
In either case, the number of independent instructions 
examined for simultaneous execution is sufficiently higher 
than the number of fetched instructions that enter the 
instruction window. Obviously, branch prediction becomes 
more important with wider processors. 
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(b) 

Fig. 2. Speedup achieved by branch prediction with varying 
machine width 
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(b) 

Fig. 3. Maximum additional speedup achieved by perfect 
value prediction with varying machine width 

 
V. CONCLUSION 

 
The main conclusions that can be drawn from this study are 

the following: 
•  The benefits of branch and value prediction are higher 

when control and true data dependences have a much 
higher influence on the total execution time of a 
program; 

•  Value prediction is an effective approach that might 
enable higher levels of parallelism without the need to 
increase machine width; 

•  There is a correlation between the value prediction 
efficiency and the branch prediction efficiency; 

•  The wider the machine, the more significant 
performance limitation the branch mispredictions 
become. 
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