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Abstract— This paper presents how a novel simulation
package for optimal control based on dynamic programming
can be used for selecting the drives once the constraints
are known: range of speeds, trajectory (minimum radius
for turns), load that will be carried by the mobile robot
and its position on the platform (inertial properties of the
mobile robot with the load). We calculate the necessary
driving torques at the wheels of the mobile robot for vari-
ous trajectories having a shape of the figure eight within a
given time. The simulation uses fully customized dynamic
model of the mobile robot that is propelled by two indepen-
dent wheels and has third non-powered wheel that freely
rotates around the vertical shaft to ensure three degrees of
freedom. Dynamic programming and the discrete mathe-
matic model allow simulation of the nonholonomic system.
We presented in this paper only one possible application,
that is, the analysis of three different loads carried along
the same trajectory. The simulation clearly shows the rela-
tion between the tracking error and required diving torque;
thereby, allow selection of the adequate driving motors for
a given load and vice versa.

Keywords— Mobile robot, dynamic programing, optimal
tracking

I. INTRODUCTION

The design of a mobile robot propelled by two inde-
pendent wheels is of interest for automation of production
lines. A two-wheel-mobil robot is a nonholonomic system.
Many studies considered the kinematics of mobile robots
[1, 2, 3]. These studies provide important information for
dynamic analysis and synthesis of controllers. It is known
that stabilization of nonholonomic mobile robots is quite
difficult [4, 5, 6]. The problem becomes even more compli-
cated if one wants to eliminate the restriction of mobility
to only equilibrium state [7].

In our earlier work we developed a simulation method
for optimal control that relies on dynamic programming
[8, 9, 10, 11]. This presentation is dedicated to show how
this simulation method can be used for designing the drives
upon the known range of speeds, trajectories (minimum
radius), load that will be carried by the mobile robot,
and needed velocity .We discuss here the necessary driving
torques at the wheels of the mobile robot for various loads
along the same trajectory that should be covered in a given
time. The simulation uses the dynamic model of the mobile
robot with two powered wheels, one free rotational wheel,
platform, and the load that can be positioned at various
posts at the platform. The discrete mathematical model
and dynamic programming allow simulation of this non-
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holonomic system [8, 9]. The optimal control minimizes
the cost function that is a sum of the LMS tracking error
and the square of the actuation voltages at both wheels.
We selected to analyze DC motors, yet the algorithm al-
lows the analysis of other electrical motors. The simulation
was used in an iterative procedure, that is, that is, the mass
(load) on the platform was varied and tracking and driving
torques calculated. . In this way it was possible to select
the motors that secure tracking for a range of trajectories,
loads positioned at different posts at the platform of the
robot, and various maximum speeds. The analysis allows
selection of the most appropriate components when design-
ing the mobile robot.

II. DYNAMIC MODEL OF MOBILE ROBOT

We start the presentation with the constraints that have
been introduced in this study. We analyze a planar model
of a mobile robot with two actuated wheels. The mobile ro-
bot shown in Fig. 1 is a typical example of a nonholonomic
mechanical system. It consist of vehicle with two actuated
wheels mounted on opposite sides of the platform, plat-
form, and a front free running and rotating wheel. The
motion and orientation are achieved by independent actu-
ators, e.g., DC motors providing the necessary torques to
the rear wheels. The motion can be described in Carte-
sian coordinates xQOy, and the system has three degrees of
freedom.
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Fig. 1. The model of the mobile robot

The following notations are used (Fig. 1): 2l is the width
of the mobile robot, a is the radius of the wheel, O — ij is
the world coordinate system, and A —1i;j; is the coordinate



system fixed to the mobile robot. A is the origin of the
coordinate system A-i;j; and the middle between the right
and left driving wheels. The center of mass of the body and
wheel with motor is C', which is distance from A description
with &, and 7, along iy and j; respectively.

The following other notations will be used in the deriva-
tion of the constraint equations and dynamic equations:
o A(z,y): the intersection of the axis of symmetry with the
driving wheel axis, where (x4, yq) is coordinates of point A
in the inertia frame O —ij ;
e C(&.,m,): the center of mass of the mobile robots,where
(&, n,.) is coordinates of point C' in the inertia frame A-iqjq;
e [: the distance between the driving wheels and the axis
of symmetry;
e a: the radius of each driving wheel;
o m: the mass of the mobile robot;
e J4: the moment of inertia of the mobile robot about
vertical axis through A;
We considered ¢ as a control input and construct the con-
trol system for the following kinematic model[9]
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where ¢, and ¢, represent the angular velocities of right
and left wheel.

The Lagrange formalism was used to derive the dynamic
equations of the mobile robot. Since the trajectory of the
mobile base is constrained to the horizontal plane, i.e. since
the system cannot change its vertical position, its potential
energy U remains constant.

The following system of differential equations describes
the dynamic [8], [9]:

019?.1 + 024?.2 +C3 (<P1 - 902) ffoz =M 2)
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where are M7 and Ms torques on the shafts right and
left wheel respectively, and
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We adopted for this study the dynamic model of the
actuators in the form

M1 = Ajug — Aspy — Az,

— T i 3
Mo = Ajug — Aspy — A3y )

where are
Com N . _ . _ C.N,C,, Ny,
A1: RTM;AQ—JmN'UNMv AB—BC_TM

The following notations apply for the Eq. (3):
e uj uy - voltages of the DC motors;
o C,,- torque constant;
e R,- armature resistance;
o J- the moment of inertia of rotor DC motor’s;
o B.- the viscous friction coefficient;
e C,- back emf-constant

o M1, M,,o- the total torque on the shaft of reduction

gearheads

e N,, N/~ the transmission ratio(velocity and torque)
After simple manipulation of the Eqs. (1) - (3), the

differential equations get the following form :

C11 + C2fy + Cs (01 — 92) P2 = Aruz — Aspy — Az,
Cay + Cs$y — Co (91 — $a) pg = Arug — Azdy — A3<P<24)
The vector of state variables is x = (21, x2, 3, x4), where
T1 = Y1,T2 = Q1,T3 = Py, T4 = @y. By solving the
system.(4) we can describe the dynamics of the mobile ro-
bot in the form[10], [11]:
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j)3 = X4
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&y =Py + Y Guju;
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The terms P», Py G2j,Gaj,j = 1,2 are nonlinear func-
tions obtained as result of a series of linear transforma-
tions of the system.4 In order to chose an admissible control
u = u(t) in such a way that the actual trajectory X = X(¢)
will be close as possible to desired trajectory Z = Z(t), and
constraining the voltages level of motors, we introduce the
following cost function :

to+T

tf {lz1(t) = 21(8)]* + [23(t) — 23(1)]? (6)
FA[u3(t) +u3(t)]}dt

R(u) =

III. SIMULATION RESULTS

In the simulation, the dynamic equations of the mobile
robot derived in Section 2 were used to obtain the motion
data of two wheels at all times. The parameters used for
simulation are presented in Tables I and II. For the simu-
lation we used the parameters provided by Faulhaber DC-
Micromotors 3557-012 CS. The simulation was performed
by using the MatLab and Simluink.

TABLE I.
PARAMETER VALUES OF THE VEHICLE

Explanation Notation Value
mass of the platform m 5+ 100kg
length of the platform L 1m
distance b.etween wheels and I 0.5m
the axis of symmetry
radius of driving wheel a 0.1m
coordinate center of mass &, —0.3+0.3m
coordinate center of mass Ne 0-=0.Tm




TABLE.II.
PARAMETER VALUES OF THE DC MOTORS

Explanation Notation Value
nominal voltage Un 12 (V)
recommended speed ne <5000 (Tpm)
recommended torque Me §50(mNm)
terminal resistance R 1,34(112%) (Q)
back EMF constant Ce 0,02.076(mV/rpm)
torque constant Cym 19.82(mNm/A)
rotor inertia Im 4,693 10~° (kgm?)
weight My 270(9)
angular acceleration,max Bmax 741073 (rad 8_2)
reduction ratio Ny, NM 159

Fig. 2 illustrates the test path. An “8”’"-shaped tra-
jectory was employed, where c is a constant relating the
velocity and 2a and b represent the long and short axis,
respectively. Accordingly, the desired angular position for
the driving wheel at every sampling time can be computed
by the path generator using the kinematic equations re-
lated to the structure of driving wheels of mobile robots.
In the simulation, a = 1m , b = 0.4m and c = 0.02.
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Fig. 2. Test path (full line) and actual path (dashed line)

The trajectory is defined by: x = 2acos(cwt) and
y = bsin(2cwt), , where w = 2 /cT, and t belongs to the
interval 0 — T, T" = 60s. This 60 seconds interval is the
time during which the mobile robot should complete a full
trajectory. The dashed line in Fig. 2 shows the actual path
obtained from simulation.

Fig. 3. Desired trajectory (full line) and actual path (dashed line)
in the case m=>50kg
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Fig. 4. Normalized driving torques in the case m=50kg

Full line in Fig. 3 shows the desired trajectory, and the
dashed line the path obtained when optimal control was
applied for the nominal loading of the platform with the
mass m = 50 kg.

Fig. 4 presents the normalized driving torques during
the described motion.
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Fig. 5. Desired path (full line) and actual path (dashed line) during
the described motion in the case m = 15 kg
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Fig. 6. Normalized driving torques in the case m=15kg

Fig. 5 shows the desired trajectory and superimposed
path obtained with optimal control for the case where the
loading was decreased form 50 kg to mass of m = 15 kg.
Fig. 6 presents the normalized driving torques during the
described motion in this case..

Finally in Figs. 7 to 8 the desired trajectory, realized
path and normalized torques are for the loading of platform
with the mass m = 8 kg.
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Fig. 7. Desired path (full line) and actual path (dashed line) during
the described motion in the case m=8 kg
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Fig. 8. Normalized driving torques in the case m=8kg

IV. DISCUSSION AND CONCLUSION

We presented results for three different loads (Figs. 3 -
8). There is a characteristic discrepancy between the pre-
sented Figures. In the latest set (Figs. 7 - 8) when the
smallest load (8 kg) positioned at the platform was ana-
lyzed the tracking error was very small, and the normalized
torques were within the allowed limits, that is, achievable
by the motors used in simulation. In the second set, when
the load was 15 kg, the error was substantially bigger yet
tolerable, and the driving torques occasionally reached the
allowed maximum. This suggests that this load, at the se-
lected trajectory and selected speed (determined with the
interval T = 60 seconds in this case) was still achievable.
The first presented case (Figs 3 - 4) demonstrates that the
error was bigger compared to the later two, and that the
motors were basically running at maximum, still not pro-
viding adequate power. This suggests, that for a load of 50
kg other more powerful motors must be selected in order
to ensure good tracking. This analysis can be repeated for
other trajectories, as well as other speeds (by changing the
time T).

The simulation runs very fast (10 seconds) on a PC com-
puter with 400MHz and 32Mb of RAM memory. This al-
lows that a series of simulation can be performed and data
base formed that defines the limitations and requirements
for selection of drives for a mobile robots. The specific
value of the simulation is that the dialog windows within
Simulink allow direct change mass, position of the load,
dimensions of the mobile robot, and all other parameters.
The simulation allows in addition the analysis of the vari-
ation of the orientation of the mobile robot with respect

to the desired orientation pointing tangential to the tra-
jectory. This might be of interest for analysis of the space
needed for the mobile robot when operating in constrained
space.
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