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An Algorithm for Non-Maneuvering Target’s 
Kinematic Parameters Estimation Using BPNN 

Mimi D. Daneva and Roumen K. Kountchev

Abstract −−−− An algorithm for tracking on non-maneuvering 
aircrafts in spherical coordinates with back-propagation neural 
network (BPNN) is presented. The experiments include Monte 
Carlo verification of the results with standard recursive Kalman 
filter for 100 runs. An example of the algorithm’s performance 
using recorded real radar data is shown.  
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I. INTRODUCTION 
Radar data processing in automatic systems for air traffic 

control (ATC) obtains information about the aircraft’s spatial 
location, speed and acceleration, heading angle, etc.  Multiple 
target tracking (MTT) procedures use radar information 
obtained from several radar scans. In this context the 
hypotheses for aircraft’s motion (maneuvering or non-
maneuvering target) and the corresponding kinematic models 
are used under assumption that the current state of the target is 
subjected to random perturbations (due to unknown system 
input or disturbances as turbulence, air draughts, etc.) or 
maneuvers. Automatic systems for ATC use the estimated 
target trajectories to control the standard distance between two 
or more aircrafts with application in Traffic Alert and 
Collision Avoidance Systems and for flight paths control 
during critic phases of the flight (for example − approach 
landing). Different methods for track filtration and prediction 
are used in practice to estimate the target’s parameters 
(position and velocity), such as recursive Kalman filter (KF), 
α−β filter, non-linear and adaptive filters [1], [2]. In general 
case they use probabilities and need to a priori knowledge 
about the statistics of the input data. 

Fig. 1. Tracking in inertial coordinates 
The radar data processing algorithms can work in inertial 

polar or spherical coordinate system (Fig. 1) or in Cartesian 
coordinates. The choice of the coordinate system depends on 
the fact whether the information about the target is received 
from one or more sensors. The multiple-target tracking system 
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includes the following element: sensor data processing and 
measurement formation; correlation; track initiation, 
confirmation, and deletion; filtering and prediction; gating. 
Usually the missed target detection for five consecutive radar 
scans is used as track deletion criteria [2].  

The kinematic model of non-maneuvering target in state 
space is second-ordered (nearly constant velocity) and is 
defined by [1], [2] 

( ) ( ) ( )kk1k ΓωΦXX +=+                         (1) 
( ) ( ) ( )kkk νHXZ +=                              (2) 

where ( ) ( ) ( ) ( )[ ]kkkk TTT
321 XXXX =  is the state vector of 

the dynamic system (the aircraft) with components the state 
vectors [ ]iii ηη= DX  for coordinate i, i=1,2,3. Each vector 

iX  contains position iη  and velocity iηD . The symbol i marks 
the one of the coordinates ρ, θ, and h and is used for notatio-
nal simplicity. The discrete time interval is noted by k. The 
vectors ωωωω and νννν (both of dimension three) are mutually 
uncorrelated random-valued processes, each with zero mean, 
known variance and uncorrelated with ( )0X . The ( )kω  gives 
the random velocity’s changes. The ( )kν  models the radar 
measurement errors. The system matrices are defined by  
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sampling time is denoted by T. The noise covariance matrices 
are  
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where the superscript T denoted the transpose operator. 
In this paper an algorithm for non-maneuvering aircraft 

tracks filtration and first order prediction using multiple-
layered perceptrons neural network and error back- 
propagation learning algorithm is presented. Position-only 
radar measurements (range, azimuth, and altitude) in inertial 
coordinate system are used. The specific application of the 
algorithm is related to high accuracy estimation problem. The 
performance of the BPNN tracking filter is compared with 
recursive KF for 100 Monte Carlo runs in MATLAB 
environment. An illustrative example show the capability of 
the BPNN algorithm using recorded real input data from 
Monopulse Secondary Surveillance Radar CMSSR−401 [3]. 

II. BPNN FOR PREDICTION  
Multiple-layered perceptrons NNs with BP training 

algorithm pertain to the non-recursive class NNs and have a, 
and classification problems in pattern recognition, theory of 
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Fig. 2. BPNN for one-step-ahead prediction
automatic control, data processing, etc [4]. The standard 
architecture of BPNN with one hidden layer [5] for first order 
prediction is shown in Fig. 2, where 1z −  denotes the unit de-
lay operator.  The input, hidden, and output neurons are 
denoted by ( ),L1,..,l ,ninp

l = ( ),M1,..,m ,n hid
m =  and ,n out

j  

( )J1,..,j = , respectively. The internal structure of the input 
neurons is not shown for simplicity, because they have only 
sensitive function in the learning process. The activation 
function for neuron i is sigmoid nonlinearity defined by  

( ) ( )iii tanhψ γυα=υ                             (3) 
where α and γ are constants, iυ  is the internal activity level of 
the neuron i. In some cases is suitable to use linear output 
neurons. 

 The error correction learning [5], [6] uses the error back 
propagated signal (layer by layer) for weights adjustments till 
the NN output vector ( )npY  become closest to the desired 

response ( )npd  at iteration n for the learning example p. The 

local error for neuron out
jn is  

( ) ( ) ( )nyndne jjj −=                              (4) 
It is propagated in backward manner in the neural structure 
from the output layer to the hidden layer, and the local 
gradient for each neuron is computed recursively. The 
standard BP algorithm uses the steepest-descent gradient 
approach to minimize the mean-squared error function. The 
local error function for neuron j for pattern p is defined by 

( ) ( ) ( ) ( )( )2
jj

2
jp nynd

2
1ne

2
1nξ −==                (5) 

The global error for batch mode learning is obtained 
after the presentation of all the training examples. It is used as 
cost function (net performance function) and is defined by 

( )∑ ∑=
= =
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pe

p2
1E                               (6) 

where maxp is the last training example 
The equations of the standard batch mode BP algorithm  

 for the output and the hidden layer are, as follow 

( ) ( )( )pυψpy ii = ; ( ) ( ) ( )∑=υ
=
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iisi pypwp             (7) 

where maxs - total number of inputs (excluding the threshold) 
applied to neuron i; 
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where ( )n∆ isw  and ( )niδ  are the weight changes and local 
error gradient for neuron i; µ is the learning-rate parameter. 
The local gradients for the output and the hidden neurons are 
defined as [5] 

( ) ( ) ( )( )nψnen jjjj υ=δ �                          (10) 

( ) ( )( ) ( ) ( )∑υ=δ
m

mjjmm nnδnψn w�                 (11) 

When the local approximation of Eq. (5) around the 
current point ( )nw  is used, the minimization is performed at 
each iteration of the algorithm. The weight change can be 
obtained as 

( ) ( ) ( ) ( )nµn1nn∆ gwww −=−+=                  (12) 
where ( )wg w pξ∇=  is the gradient vector. 

The cost function in the neighborhood of point ( )nw  
using Taylor series is defined by 
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where ( ) ( )( )nn p
2 wH ξ∇=  is the Hessian matrix. As final 

result of the Eq. (13)’s differentiation ( )1n +w  is obtained as 

( ) ( ) ( ) ( ) ( ) ( )nnnn∆n1n 1 gHwwww −−=+=+         (14) 
The Levenberg-Marquardt learning algorithm [5] appro-

ximates the Hessian matrix by the matrix  
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where I - identity matrix.  
III. PROPOSED ALGORITHM 

The proposed algorithm for tracking on non-
maneuvering targets uses BPNN for track filtration and one-
step-ahead prediction to form the estimate of the current and 
future kinematic state variables (position and velocity) from 
position-only radar measurements. The data about the target’s 
motion are received in cylindrical coordinates (range ρ, 
azimuth θ, and altitude h. The kinematic model is described 
by Eqs. (1), and (2). The normalization procedure is used for 
pattern formulation. It arranges the input data randomly in the 
interval  [-0,9, 0,9] and prevents the hidden weights to get into 
the zones of high non-linearity of the activation functions [6]. 
Some BPNNs with different number of hidden nodes are 
investigated in heuristic way to find the optimal architecture 
for track filtering and prediction. It includes an input layer 
with L=3 neurons, a single hidden layer with M=15 neurons, 
and an output layer with J=3 neurons. The neurons in each 
layer have full interconnections with the neurons in the 
previous layer. The input and hidden units have bipolar 
sigmoidal activation functions with biases. The output units 
are linear and perform the linear combination of the hidden 
neurons’ reactions to form the estimated value of the state 
vector ( )1kˆ +∗X . The prediction error is defined as the diffe-

rence between the pattern vector ( )1k +P  and ( )1kˆ +∗X  [5]. 
The algorithm includes the following steps. 

Step 1. Data normalization to obtain the pattern vector P as 
( )

( ) 9.0
ZZ
Z8.1

minmax

min −
−
−

=
Z

P                         (16) 

Step 2. BPNN initialization: The Nguyen-Widrow hidden 
weights initialization procedure [6] is used. It prevents all the 
hidden weights from premature saturation during the first few 
iterations. 
Step 3. The training data set presentation: The training set is 
formed using the measurements received from the first five 
radar scans. The training set size is chosen for track deletion 
criteria [2]. 
Step 4. Forward computations: Compute the net internal acti-
vity levels and the output signals of all the neurons in the 
layers according the Levenberg-Marquardt learning algorithm. 
Step 5. Error back-propagation: Compute the vectors of local 
error gradients for all the neurons in the output and the hidden 
layer using the same training algorithm. 
Step 6. Iterations till the global error minimum is found or the 
maximum number of epochs or the maximum learning rate is 
achieved. 
Step 7.  Presentation of the next (unknown) data set from the 
same track with the same size as the training set and go back 
to Step 4, Step 5 and Step 6 to perform the prediction phase of 
the algorithm. 
Step 8. Repeat cyclically the Step 4 to Step 7 till the track end 
is found. 
Step 9. Recovering the original variables by data unnormali-
zation procedure according to the inverse formula of  (16). 

IV. EXPERIMENTAL RESULTS 
The simulated input data and real radar data record from 

Monopulse Secondary Surveillance Radar CMSSR-401 are 
used for the experiments. The radar sample time is T=5 s [3]. 
The modeled noises ( )kω , ( )kν , and the dynamic system’s 
driving input vector ( )ku have Gaussian distribution with zero 
mean and known variances. The Gaussian cumulative 
distribution functions of the noises are verificated with χ2−test 
and significant level 05.0=α . The acceleration standard 
deviation is g2=σω  [2] according to the airworthiness for 
non-maneuvering aircrafts. The ( )kν ’s standard deviations are 

,nmi 05,0=σ
ρν ,deg 07,0=σ

θν  and feet 100
h

=σν  for ran-

ge, azimuth and altitude, respectively [3]. The corresponding 
driving input’s variance is assumed to be three times larger 
than the measurement error variance [2]. 

The BPNN training parameters and the required CPU ti-
me and flops for training and prediction phases are shown in 
Table I. Three cases are considered. The same input data for 
one random simulated track are used for N=500 runs of the 
algorithm (Case I) to obtain the optimal NN architecture. The 
averaged training parameters epochs ( )tr

epn , the net perfor-

mance function E  and gradients in respect to each coordinate 
hE ,E ,E ∇∇∇ θρ , the required CPU time and flops for 

training and prediction phases are compared for different 
number of hidden nodes.  The BPNN with M=15 is chosen as 
optimal, because the training is faster and requires less CPU 
time and flops than the other architectures. The net 
performance function and gradients in this case are 
approximately from the same order than the cases with the 
other M. The trained net does not need to additional iterations 
during the processing of the unknown data sets. The 
performance of the algorithm is compared using standard 
recursive Kalman filter with Monte Carlo experiment of 
N=100 runs (Case II). The same parameters for an example of  

TABLE I 
BPNN PARAMETERS DURING THE TRAINING 

0,050 0,239 0,9720,364

Case

M
( )tr
epn  

2310. E   −

-0,22

1410. E −
ρ∇

1410. E −
θ∇

14
h 10. E −∇

02
max 10. −µ

( )     s ,t  tr
CPU

( )     s ,t  pr
CPU

( )  .10n   6tr
flops

( )  .10n   6pr
flops
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-0,41
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TABLE II  
MONTE CARLO RESULTS 

real recorded track with constant altitude are presented by 
Case III. The statistics (mean and standard deviation) of the 
averaged for all runs absolute values of the tracking errors 

BPNNς  and KFς  in Cases II and III are shown in Table II. It is 
clear that the error statistics for BPNN algorithm in all the 
cases are smaller than the KF error statistics. The net 
performance functions in Case III in respect to the epoch’s 
number and the number of hidden units M are plotted in Fig.3. 
The components of the tracking errors of BPNN algorithm 
and the KF in relation to each coordinate are plotted in Fig. 4. 

The absolute error statistics due to recovering after unnorma- 

Fig. 3. BPNN performance functions versus the epoch’s number 
Fig. 4. Tracking errors for Case III 

lization in respect to each coordinate are shown in Table III.  
All the results are obtained by Intel Celeron 500 PPGA 

with SDRAM 128 MB. 
TABLE III 

ERROR DUE TO RECOVERING: STATISTICS 

V. CONCLUSION 
This paper has presented the algorithm for target’s kinematic 

parameters estimation using BPNN. The comparative analysis of the 
algorithm’s performance based on Monte Carlo experiment using 
recursive Kalman filter is done. The tracking error of the trained net 
is negligible larger than the tracking error during the training. The 
error due to recovering after normalization does not affect to the 
algorithm’s accuracy. A parallel hardware implementation of the 
algorithm using transputer or digital signal processing modules or 
programmable neural networks modules will reduce the CPU time. It 
will reflect positively onto the data association, which is the other 
important problem in MTT and will increase the safety level of ATC.  
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