

357

An Algorithm for Non-Maneuvering Target’s
Kinematic Parameters Estimation Using BPNN

Mimi D. Daneva and Roumen K. Kountchev

Abstract −−−− An algorithm for tracking on non-maneuvering
aircrafts in spherical coordinates with back-propagation neural
network (BPNN) is presented. The experiments include Monte
Carlo verification of the results with standard recursive Kalman
filter for 100 runs. An example of the algorithm’s performance
using recorded real radar data is shown.

Keywords −−−− Radar data processing, neural networks

I. INTRODUCTION
Radar data processing in automatic systems for air traffic

control (ATC) obtains information about the aircraft’s spatial
location, speed and acceleration, heading angle, etc. Multiple
target tracking (MTT) procedures use radar information
obtained from several radar scans. In this context the
hypotheses for aircraft’s motion (maneuvering or non-
maneuvering target) and the corresponding kinematic models
are used under assumption that the current state of the target is
subjected to random perturbations (due to unknown system
input or disturbances as turbulence, air draughts, etc.) or
maneuvers. Automatic systems for ATC use the estimated
target trajectories to control the standard distance between two
or more aircrafts with application in Traffic Alert and
Collision Avoidance Systems and for flight paths control
during critic phases of the flight (for example − approach
landing). Different methods for track filtration and prediction
are used in practice to estimate the target’s parameters
(position and velocity), such as recursive Kalman filter (KF),
α−β filter, non-linear and adaptive filters [1], [2]. In general
case they use probabilities and need to a priori knowledge
about the statistics of the input data.

Fig. 1. Tracking in inertial coordinates
The radar data processing algorithms can work in inertial

polar or spherical coordinate system (Fig. 1) or in Cartesian
coordinates. The choice of the coordinate system depends on
the fact whether the information about the target is received
from one or more sensors. The multiple-target tracking system

Mimi D. Daneva is from the Faculty of Communications and
Communicational Technologies, 8 Kl. Ochridski str., 1000 Sofia,
Bulgaria, e-mail: mimidan@vmei.acad.bg

Roumen K. Kountchev is from the Faculty of Communications
and Communicational Technologies, Technical University of Sofia, 8
Kl. Ochridski str., 1000 Sofia, Bulgaria, e-mail:
rkountch@vmei.acad.bg

includes the following element: sensor data processing and
measurement formation; correlation; track initiation,
confirmation, and deletion; filtering and prediction; gating.
Usually the missed target detection for five consecutive radar
scans is used as track deletion criteria [2].

The kinematic model of non-maneuvering target in state
space is second-ordered (nearly constant velocity) and is
defined by [1], [2]

() () ()kk1k ΓωΦXX +=+ (1)
() () ()kkk νHXZ += (2)

where () () () ()[]kkkk TTT
321 XXXX = is the state vector of

the dynamic system (the aircraft) with components the state
vectors []iii ηη= DX for coordinate i, i=1,2,3. Each vector

iX contains position iη and velocity iηD . The symbol i marks
the one of the coordinates ρ, θ, and h and is used for notatio-
nal simplicity. The discrete time interval is noted by k. The
vectors ωωωω and νννν (both of dimension three) are mutually
uncorrelated random-valued processes, each with zero mean,
known variance and uncorrelated with ()0X . The ()kω gives
the random velocity’s changes. The ()kν models the radar
measurement errors. The system matrices are defined by

[]; diag 222 ΦΦΦΦ =
[]; diag 222 ΓΓΓΓ =
[]222 HHHH diag=

where []0 1 ;
T

2/T ;
10
T1 2

=











=








= 222 ΗΓΦ . The radar

sampling time is denoted by T. The noise covariance matrices
are

[] () ()[] [] () ()[]kkEr ; kkEq T
ij

T
ij ννRωωQ ====

where the superscript T denoted the transpose operator.
In this paper an algorithm for non-maneuvering aircraft

tracks filtration and first order prediction using multiple-
layered perceptrons neural network and error back-
propagation learning algorithm is presented. Position-only
radar measurements (range, azimuth, and altitude) in inertial
coordinate system are used. The specific application of the
algorithm is related to high accuracy estimation problem. The
performance of the BPNN tracking filter is compared with
recursive KF for 100 Monte Carlo runs in MATLAB
environment. An illustrative example show the capability of
the BPNN algorithm using recorded real input data from
Monopulse Secondary Surveillance Radar CMSSR−401 [3].

II. BPNN FOR PREDICTION
Multiple-layered perceptrons NNs with BP training

algorithm pertain to the non-recursive class NNs and have a,
and classification problems in pattern recognition, theory of

V

N

Е

θ

ρ

ε

h

ρ - range
θ - azimuth angle
ε - elevation
angle
h – altitude
N - North
E - East

358

Fig. 2. BPNN for one-step-ahead prediction
automatic control, data processing, etc [4]. The standard
architecture of BPNN with one hidden layer [5] for first order
prediction is shown in Fig. 2, where 1z − denotes the unit de-
lay operator. The input, hidden, and output neurons are
denoted by (),L1,..,l ,ninp

l = (),M1,..,m ,n hid
m = and ,n out

j

()J1,..,j = , respectively. The internal structure of the input
neurons is not shown for simplicity, because they have only
sensitive function in the learning process. The activation
function for neuron i is sigmoid nonlinearity defined by

() ()iii tanhψ γυα=υ (3)
where α and γ are constants, iυ is the internal activity level of
the neuron i. In some cases is suitable to use linear output
neurons.

 The error correction learning [5], [6] uses the error back
propagated signal (layer by layer) for weights adjustments till
the NN output vector ()npY become closest to the desired

response ()npd at iteration n for the learning example p. The

local error for neuron out
jn is

() () ()nyndne jjj −= (4)
It is propagated in backward manner in the neural structure
from the output layer to the hidden layer, and the local
gradient for each neuron is computed recursively. The
standard BP algorithm uses the steepest-descent gradient
approach to minimize the mean-squared error function. The
local error function for neuron j for pattern p is defined by

() () () ()()2
jj

2
jp nynd

2
1ne

2
1nξ −== (5)

The global error for batch mode learning is obtained
after the presentation of all the training examples. It is used as
cost function (net performance function) and is defined by

()∑ ∑=
= =

maxp

1p

J

1j

2
j

max
pe

p2
1E (6)

where maxp is the last training example
The equations of the standard batch mode BP algorithm

 for the output and the hidden layer are, as follow

() ()()pυψpy ii = ; () () ()∑=υ
=

maxs

1s
iisi pypwp (7)

where maxs - total number of inputs (excluding the threshold)
applied to neuron i;

() () ()nynµn∆ iiis δ=w (8)

() ()
()

()
()

()
()n
ny

ny
ne

ne
nξ

n
i

i

i

i

i

p
i υ∂

∂
∂
∂

∂

∂
−=δ (9)

where ()n∆ isw and ()niδ are the weight changes and local
error gradient for neuron i; µ is the learning-rate parameter.
The local gradients for the output and the hidden neurons are
defined as [5]

() () ()()nψnen jjjj υ=δ � (10)

() ()() () ()∑υ=δ
m

mjjmm nnδnψn w� (11)

When the local approximation of Eq. (5) around the
current point ()nw is used, the minimization is performed at
each iteration of the algorithm. The weight change can be
obtained as

() () () ()nµn1nn∆ gwww −=−+= (12)
where ()wg w pξ∇= is the gradient vector.

The cost function in the neighborhood of point ()nw
using Taylor series is defined by

()() ()() ()()

() () () () ()n∆nn∆
2
1n∆n

nξ1nξn∆ξ

TT

ppp

wHwwg

www

+

≅−+=
 (13)

where () ()()nn p
2 wH ξ∇= is the Hessian matrix. As final

result of the Eq. (13)’s differentiation ()1n +w is obtained as

() () () () () ()nnnn∆n1n 1 gHwwww −−=+=+ (14)
The Levenberg-Marquardt learning algorithm [5] appro-

ximates the Hessian matrix by the matrix

()()[] 0vlim, 0 , vvnξ
t

p
2 =≥+∇

∞→
Iw (15)

+1

)n(d L

)n(d1

)n(y J

)n(y1

out
1x

inp
1n

inp
Ln

hid
Mn

out
1n

1z −

x

x

1z −

hid
1x

hid
1n

+)(υψ

)(υψD

+)(υψ

)(υψD

+

+

x

+)(υψ

)(υψD

+)(υψ

)(υψD

x

+

+

out
Jn

out
Mx

µµ
µµ

µ µ
µµ

() ()[]
() ()[]nd...nd

ny...ny

L1p

J1p

=

=

d

Y

−

−

359

where I - identity matrix.
III. PROPOSED ALGORITHM

The proposed algorithm for tracking on non-
maneuvering targets uses BPNN for track filtration and one-
step-ahead prediction to form the estimate of the current and
future kinematic state variables (position and velocity) from
position-only radar measurements. The data about the target’s
motion are received in cylindrical coordinates (range ρ,
azimuth θ, and altitude h. The kinematic model is described
by Eqs. (1), and (2). The normalization procedure is used for
pattern formulation. It arranges the input data randomly in the
interval [-0,9, 0,9] and prevents the hidden weights to get into
the zones of high non-linearity of the activation functions [6].
Some BPNNs with different number of hidden nodes are
investigated in heuristic way to find the optimal architecture
for track filtering and prediction. It includes an input layer
with L=3 neurons, a single hidden layer with M=15 neurons,
and an output layer with J=3 neurons. The neurons in each
layer have full interconnections with the neurons in the
previous layer. The input and hidden units have bipolar
sigmoidal activation functions with biases. The output units
are linear and perform the linear combination of the hidden
neurons’ reactions to form the estimated value of the state
vector ()1kˆ +∗X . The prediction error is defined as the diffe-

rence between the pattern vector ()1k +P and ()1kˆ +∗X [5].
The algorithm includes the following steps.

Step 1. Data normalization to obtain the pattern vector P as
()

() 9.0
ZZ
Z8.1

minmax

min −
−
−

=
Z

P (16)

Step 2. BPNN initialization: The Nguyen-Widrow hidden
weights initialization procedure [6] is used. It prevents all the
hidden weights from premature saturation during the first few
iterations.
Step 3. The training data set presentation: The training set is
formed using the measurements received from the first five
radar scans. The training set size is chosen for track deletion
criteria [2].
Step 4. Forward computations: Compute the net internal acti-
vity levels and the output signals of all the neurons in the
layers according the Levenberg-Marquardt learning algorithm.
Step 5. Error back-propagation: Compute the vectors of local
error gradients for all the neurons in the output and the hidden
layer using the same training algorithm.
Step 6. Iterations till the global error minimum is found or the
maximum number of epochs or the maximum learning rate is
achieved.
Step 7. Presentation of the next (unknown) data set from the
same track with the same size as the training set and go back
to Step 4, Step 5 and Step 6 to perform the prediction phase of
the algorithm.
Step 8. Repeat cyclically the Step 4 to Step 7 till the track end
is found.
Step 9. Recovering the original variables by data unnormali-
zation procedure according to the inverse formula of (16).

IV. EXPERIMENTAL RESULTS
The simulated input data and real radar data record from

Monopulse Secondary Surveillance Radar CMSSR-401 are
used for the experiments. The radar sample time is T=5 s [3].
The modeled noises ()kω , ()kν , and the dynamic system’s
driving input vector ()ku have Gaussian distribution with zero
mean and known variances. The Gaussian cumulative
distribution functions of the noises are verificated with χ2−test
and significant level 05.0=α . The acceleration standard
deviation is g2=σω [2] according to the airworthiness for
non-maneuvering aircrafts. The ()kν ’s standard deviations are

,nmi 05,0=σ
ρν ,deg 07,0=σ

θν and feet 100
h

=σν for ran-

ge, azimuth and altitude, respectively [3]. The corresponding
driving input’s variance is assumed to be three times larger
than the measurement error variance [2].

The BPNN training parameters and the required CPU ti-
me and flops for training and prediction phases are shown in
Table I. Three cases are considered. The same input data for
one random simulated track are used for N=500 runs of the
algorithm (Case I) to obtain the optimal NN architecture. The
averaged training parameters epochs ()tr

epn , the net perfor-

mance function E and gradients in respect to each coordinate
hE ,E ,E ∇∇∇ θρ , the required CPU time and flops for

training and prediction phases are compared for different
number of hidden nodes. The BPNN with M=15 is chosen as
optimal, because the training is faster and requires less CPU
time and flops than the other architectures. The net
performance function and gradients in this case are
approximately from the same order than the cases with the
other M. The trained net does not need to additional iterations
during the processing of the unknown data sets. The
performance of the algorithm is compared using standard
recursive Kalman filter with Monte Carlo experiment of
N=100 runs (Case II). The same parameters for an example of

TABLE I
BPNN PARAMETERS DURING THE TRAINING

0,050 0,239 0,9720,364

Case

M
()tr
epn

2310. E −

-0,22

1410. E −
ρ∇

1410. E −
θ∇

14
h 10. E −∇

02
max 10. −µ

() s ,t tr
CPU

() s ,t pr
CPU

() .10n 6tr
flops

() .10n 6pr
flops

27,80

-0,41

-0,61

 1,67 3,90 0,63

-0,23

-0,02

-0,030,02

-0,010,49

-0,03

615

-0,280,05

0,16100,381,67

I.

25125 15

55

4,72 3,904,013,24

2,007

0,42 0,450,390,38

20,8988,0594,619

 0,10 0,12

-0,05

-2,38-0,05

-7,80 0,02

-3,95

III.II.

15

6

0,14

0,370,47

3,023,41

0,10

5,6276,609

0,3640,364

15

5

360

TABLE II
MONTE CARLO RESULTS

real recorded track with constant altitude are presented by
Case III. The statistics (mean and standard deviation) of the
averaged for all runs absolute values of the tracking errors

BPNNς and KFς in Cases II and III are shown in Table II. It is
clear that the error statistics for BPNN algorithm in all the
cases are smaller than the KF error statistics. The net
performance functions in Case III in respect to the epoch’s
number and the number of hidden units M are plotted in Fig.3.
The components of the tracking errors of BPNN algorithm
and the KF in relation to each coordinate are plotted in Fig. 4.

The absolute error statistics due to recovering after unnorma-

Fig. 3. BPNN performance functions versus the epoch’s number
Fig. 4. Tracking errors for Case III

lization in respect to each coordinate are shown in Table III.
All the results are obtained by Intel Celeron 500 PPGA

with SDRAM 128 MB.
TABLE III

ERROR DUE TO RECOVERING: STATISTICS

V. CONCLUSION
This paper has presented the algorithm for target’s kinematic

parameters estimation using BPNN. The comparative analysis of the
algorithm’s performance based on Monte Carlo experiment using
recursive Kalman filter is done. The tracking error of the trained net
is negligible larger than the tracking error during the training. The
error due to recovering after normalization does not affect to the
algorithm’s accuracy. A parallel hardware implementation of the
algorithm using transputer or digital signal processing modules or
programmable neural networks modules will reduce the CPU time. It
will reflect positively onto the data association, which is the other
important problem in MTT and will increase the safety level of ATC.

REFERENCES
[1] A. Farina, F. A. Studer, Radar Data Processing, vol. I,

Letchworth, Research Studies Press, 1985.
[2] S. Blackman, Multiple Target Tracking with Radar Appli-

cations, Norwood, Artech House, 1986.
[3] Monopulse Secondary Surveillance Radar System Description,

Technical Report, Cardion Inc., Report no. 131-162A.
[4] T. H. Kerr, “Critique of Some Neural Network Architectures

and Claims for Control and Estimation”, IEEE Trans.,
Aerospace and Electronic Systems, vol. 34, no. 2, pp. 406-418,
1998.

[5] S. Haykin, Neural Networks, New York, Macmillan College
Publishing Company, 1994.

[6] C. G. Looney, Pattern Recognition Using Neural Networks,
New York, Oxford University Press, 1997

 BPNN
KFTracking

Filter

 nmi ,m
ρζ

 nmi ,
ρζσ

 deg ,
θζσ

feet ,
hζσ

0,44

0

Case Training

00

II.

 s ,t CPU

 .10 ,n 6
flops

Prediction

III.

0,6302

0,5439

III.

III.

III.

III.

III.

3,02 0,37

0,405

III.

III.

0,364

0,364

0,405

 deg ,m
θζ

feet ,m
hζ

II.

II.

II.

II.

II.

0

0,17

0,11

0,4250

0,0400

5,627

8,059

4,55

II.

II.

 10.11,1 29−

 10.75,6 15−

 10.94,4 12−

 10.03,9 13−

 10.32,5 13−

 10.37,3 13−

 10.40,1 28−

 10.84,6 14−

 10.39,5 29−

 10.99,1 14−

 10.11,6 07−

 10.36,5 12−

 10.88,9 13−

 10.65,2 07−

 10.07,1 06−

 10.58,4 07−

 10.06,1 06−

 10.60,1 06−

 10.01,1 06−

 10.28,5 07−

 10.83,1 10−

 10.49,2 10−

 10.37,2 14−

 10.03,4 14−

 10.83,1 10−

 10.24,2 10−

 10.38,2 14−

 10.62,3 14−

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9
M=5; nep=18
M=12; nep=9
M=15; nep=7
M=25; nep=6

nep

E

0 50 100 150
0

0.5

1
x 10-9

0 50 100 150
-2

0

2
x 10-6

0 50 100 150
0

0.5

1
x 10-13

0 50 100 150
-5

0

5
x 10-6

0 50 100 150
-1

0

1

0 50 100 150
-4

-2

0

2

k

k

k

k

k

k

a. BPNN Errors b. KF Errors

ζρ
, nmi ζρ

, nmi

ζθ
, deg ζθ

, deg

ζh, feet ζh, feet

0,66

Coordinate

 .10m -14
NPξ

 .10 -14
NPξ

σ

0,61

0,80

 nmi , ρ deg , θ

0,81 0,98

0,75

feet ,h

	Back to CSII session
	Main menu

