

361

A BPNN Tracking Filter Using Canonical
Transform onto the Kinematic Model

Mimi D. Daneva and Tzanko P. Georgiev
Abstract − An algorithm for tracking on non-maneuvering

targets with back-propagation neural network (BPNN) is
presented. The canonical transform and normalization
procedure are used for pattern formulation. The algorithm’s
performance is compared with recursive Kalman filter based on
Monte Carlo experiment and an example using real radar data
record in MATLAB environment.

Keywords − Data processing, neural networks, radar

I. INTRODUCTION
The accuracy problem in radar data processing in

Cartesian coordinates occupies an important place in track
fusion, where the data about the target's parameters are
obtained from several sensors. The target's kinematic model in
this case is coupled between the coordinates. The cause dues
to the fact that the target's positions are actually measured in
spherical coordinates and their convertion to Cartesian
coordinates sometimes is attended by a pseudolinear error
coupling. In this case the track filtration and extrapolation
using the standard proved in practice methods as recursive
Kalman filter (KF) without an additional preprocessing in
case of long data set size leads to poor filter's performance.
The cause is the interdependency of the components of the
Cartesian measurement vector from the polar range between
the target and the sensor, which leads to non-stationary
measurement covariance matrix and a lack of convergence of
the KF. The canonical transform (CT) converts the coupled
target dynamic model into a decoupled canonical form that is
independent in respect to the time (radar sampling interval)
and the space (the range radar-target) [1], [2]. The CT is
obtained by simultaneously diagonalizing the noise
covariance matrices of the kinematic model, followed by a
spatial-temporal normalization procedure. It helps for more
efficient implementation of the tracking algorithms.

The track life stages are initiation, confirmation and
deletion. Usually, the missed measurements for five sequential
radar scans are used as track deletion criteria [2].

The data processing algorithms using neural network [3],
[4] do not need to a priory knowledge about the statistics of
the input data. BPNN initialization set all the synaptic weights
and biases to small uniformly distributed random numbers.
The Nguyen-Widrow hidden weight initialization procedure is
recommended for multiple-layered perceptrons neural
networks. It prevents premature saturation at all hidden
neurons, which contributes the learning convergence and
ensures more efficient training [3]. Different error back-
propagation algorithms are well described in [3], [4]. The

Mimi D. Daneva is from the Faculty of Communications and
Communicational Technologies, Technical University of Sofia, 8 Kl.
Ochridski str., 1000 Sofia, Bulgaria, e-mail:
mimidan@vmei.acad.bg

Tzanko Georgiev is from the Faculty of Automation, Technical
University of Sofia, 8 Kl. Ochridski str., 1000 Sofia, Bulgaria,
e-mail: tzg@vmei.acad.bg.

Levenberg-Marquardt algorithm is required to evaluate only
first-order derivatives, always is stable and needs to less CPU
time and flops than the other training algorithms.

In this paper an algorithm for track filtration and first
order prediction in Cartesian coordinates using back-
propagation neural network (BPNN) is presented. The net
training performance function (mean squared error, MSE) for
BPNN with different number of hidden units is analyzed. The
Monte Carlo verification of the results with recursive Kalman
filter (KF) [2] for 100 runs is presented using MATLAB
package. An illustrative example with real radar data record
from Monopulse Secondary Surveillance Radar CMSSR-401
[5] is shown.

II. THE CANONICAL TRANSFORM
ONTO THE KINEMATIC MODEL

The model of the non-maneuvering target motion in
Cartesian coordinate system is second-ordered (with nearly
constant velocity). The associated state equations are [1], [2]

() () ()kk1k ΓωΦXX +=+ (1)
() () ()kkk νHXZ += (2)

where () () () ()[]kkkk TTT
321 XXXX = is the state vector of

the dynamic system (the aircraft) with components the state
vectors []ii ηη= DiX for coordinate i, i=1,2,3. Each vector

iX contains position iη and velocity (the first derivative of
the position) iηC . The symbol i marks the one of the three
Cartesian coordinates x, y, and z and is used for notational
simplicity. The discrete time interval is noted by k. The
matrices w and ν (both of dimension three) are mutually
uncorrelated vector-valued stochastic processes, each with
zero mean, known variance and uncorrelated with ()0X . The

()kω gives the presence of the velocity’s changes. The ()kν
models the radar measurement errors. The noise covariance
matrices are defined by

[] () ()[] [] () ()[]kkEr ; kkEq T
ij

T
ij ννRωωQ ====

where the superscript T denoted the transpose operator. The
system matrices are defined by

[]; diag 222 ΦΦΦΦ =
[]; diag 222 ΓΓΓΓ =
[]222 HHHH diag=

where

=

10
T1

2Φ ;

=

T
2/T 2

2Γ ; []01=2H . The letter

T signifies the radar sampling time.
The canonical transform (CT) onto the kinematic state

model is obtained by simultaneously diagonalizing the noise
covariance matrices Q and R followed by a spatial-temporal
normalization procedure. The coupling between the

362

coordinates finds expression in the off-diagonal elements of
the covariance matrices only. The CT is required for
commutative matrices Q and R, i. e. to exist their orthogonal
matrices. In general case Q and R are not commutative, so it is
necessary to diagonalize them. The requirement for their
diagonalization is both of them must be symmetric matrices,
and R – positive definite. So, the transformation matrix M,
which simultaneously diagonalizes Q and R, is orthogonalized
and normalized matrix with respect to R, and is defined by

[] []321 eeeM == ijm (3)

where 1,2,3i , =ie are a set of R-orthonormal eigenvectors,

which correspond to the eigenvalues 3 2, 1,i ,2
i =λ , obtained

by generalized singular value decomposition of the matrix
[] 1QR − . By using the Gram-Schmidt procedure, all

3 2, 1,i , =ie are R-orthonormalized, i. e. the following
conditions

3 ,2 ,1i,
i

=λ= ii ReQe (4)

3 ,2 ,1j,i,R ij
T =δ=ji ee (5)

are implemented. In Eq. (5) ijδ is the Kronecker delta fun-
ction.

After the transformation by the matrix M, the covariance
matrices of the kinematic model become

[]2
3

2
1

T ...diag~ λλ== QMMQ (6)

IRMMR == T~ (7)
where ()3x3I denotes ()3x3 identity matrix. Then, the space
dimensionless form of the dynamic system described by Eqs.
(1) and (2) is

() () ()k~k~1k~ ωGXFX +=+ (8)

() () ()k~k~k~ νXHZ += (9)
where

νMνωMωZMZXMX TTTT ~ ;~ ;~ ;~ ==== (10)
The system described by Eqs. (8) and (9) is mutually

uncorrelated between the coordinates (x, y, z) in the sense that
the state vector’s components and their estimations with
respect to the detached coordinates are independent each
other. The formulas for recovering the original variables are

[] [] ;~ ;~ 1T1T ZMZXMX
−−

== (11)

[] [] νMνωMω ~ ;~ 1T1T −−
== (12)

Next the dynamic system must be transformed in relation
to the time by setting the radar sample interval T=1. Then the
CT of the system with Eqs. (1) and (2) is determined as [1]

() () ()kk1k **** ωGXFX * +=+ (13)

() () ()kkk **** νXHZ += (14)
where all the vectors and matrices are physically
dimensionless and

;~ ;~ T*T* ZMZZXAMXAX ==== (15)
 ;~ ;T~T T*T22* νMννωMωω ==== (16)

HHHGGFF ==== === 1T
*

1T
*

1T
* ; ; (17)

where []22 AAA diag= , []T1diag=2A for the second-

order kinematic model.

III. PROPOSED BPNN TRACKING FILTER
The proposed tracking filter uses BPNN for track

filtration and one-step-ahead prediction to form the estimate
of the current and future kinematic state variables of non-
maneuvering aircraft (position and velocity) from position-
only radar measurements. The data about the target’s motion
are presented in 3-dimensional Cartesian coordinate system.
The kinematic model is described with Eqs. (1), and (2). The
CT is used as additional radar data preprocessing before
normalization procedure and the next processing with BPNN.
For verification of the BPNN tracking filter’s performance the
same transformed input data are processed with recursive KF
for 100 Monte Carlo runs.

The block diagrams of the data processing with BPNN
and KF using CT are shown in Fig. 1.

The optimal BPNN architecture for filtering and first
order prediction [3] in this case includes an input layer with

3n inp = neurons, a hidden layer with 15n hid = neurons, and

an output layer with 3n out = neurons. The number of the
hidden units is chosen according to heuristic rule. The neurons
in each layer are full connected with the neurons in the
previous layer. The input and hidden units have bipolar
sigmoidal activation functions with biases. The output units
are linear and perform the linear combination of the hidden
neurons’ reactions to form the estimated value of the state
vector ()1kˆ +∗X . The prediction error is defined as the diffe-

rence between the pattern vector ()1k +P and ()1kˆ +∗X [3].
In general case the prediction with BPNN is described with
the equations

() ()
() () ()}k],k],k

,k[f[f[f{1kˆ

outhidin

inphidoutN

www

PX ℜ=+∗

 (18)

() (){ }1k,,ek L −µℜ= ww (19)
where outf , hidf , inpf are the activation functions of the out-

put, hidden, and input layer neurons; inpw , hidw , outw are

their corresponding weight matrices. The relations Nℜ and

Lℜ describe the BPNN architecture and learning algorithm.
The net error is denoted by e, and µ is the learning rate.

The algorithm for tracking filter with BPNN includes the
following steps.
Step 1. Canonical transform using Eq. (13) and Eq. (14).
Step 2. Data normalization procedure to obtain the pattern
vector P as

()
() 9.0

ZZ
Z8.1

minmax

min −
−
−

=
∗∗

∗∗Z
P (20)

to avoid of the hard non-linearity zones of the neurons’
activation functions. It prevents the synaptic weights of the
hidden units from premature saturation at the first few
iterations.
Step 3. BPNN initialization: The Nguyen-Widrow hidden
weights initialization procedure is used.
Step 4. The training data set loading: The training set is
formed using the measurements received from the first five ra

363

Fig. 1. Block diagram for track filtering and prediction using CT
dar scans because of the track deletion criteria, i. e. the
measurement vector () 1,..,5k ,k =∗Z is used.
Step 5. Forward computations: Compute the net internal
activity levels and the output signals of all the neurons in the
layers according the Levenberg-Marquardt training algorithm.
Step 6. Error back-propagation: Compute the vectors of local
error gradients in the output and the hidden layer using the
same training algorithm.
Step 7. Iterations till the global error minimum is found or the
maximum number of epochs or the maximum learning rate is
achieved.
Step 8. Load the next (unknown) data set from the same track
with batch size 5 and go back to Step 5, Step 6 and Step 7.
Step 9. Repeat cyclically the Steps 5 to 8 till the track end is
found.
Step 10. Data unnormalization procedure using the inverse
formula of Eq. (20).
Step 11. Recovering the original variables with inverse
canonical transform according to Eq. (11) and Eq. (12).

IV. EXPERIMENTAL RESULTS
The simulated input data and real radar data record from

Monopulse Secondary Surveillance Radar CMSSR-401 are
used for the experiments. The radar sample time is T=5 s [5].
The modeled noises ()kω , ()kν and the dynamic system dri-
ving input ()ku have Gaussian distribution with zero mean
and known variances. The Gaussian cumulative distribution
functions of the noises are verificated with χ2−test and
significant level .05.0=α The acceleration standard
deviation is g2=σω [2] according to the airworthiness for
non-maneuvering aircrafts. The νννν(k)’s standard deviations are

,nmi 05,0=σ
ρν ,deg 07,0=σ

θν and feet 100
h

=σν for

range, azimuth and altitude, respectively [5]. The correspon-
ding driving input’s variance is assumed to be three times
larger than the measurement error variance [2]. The original
radar measurements are received in spherical coordinates
range ρ in nmi, azimuth θ in deg, and altitude h in feet. They
are transformed in Cartesian coordinates (x, y, z) each with
dimension in meters.

The BPNN training parameters, CPU time and flops for
training and prediction phase are shown in Table I. They are
averaged (denoted by the symbol “ − “) for N runs of the
algorithm. Some neural architectures with different number of
hidden units are investigated. The same input data for one
simulated track chosen in random way are used for
N=500.The different data at each run of Monte Carlo
experiment with N=100 are used. The parameters are denoted,
as follow: hidn - number of hidden neurons; ()tr

epn - epochs;

E - averaged net performance function (MSE) with averaged
gradients .E ,E ,E ooo zyx

∇∇∇ The CPU time and flops

required for training and prediction are denoted by
() () () ()pr

flops
tr

flops
pr

CPU
tr

CPU n ,n ,t ,t , respectively. Three cases are consi-
dered. Case I and Case II consider the BPNN tracking filter
with CT and without CT, respectively, using simulated data.
Case III represents the BPNN performance with CT when an
example real track with length 130 scans is used. The BPNN
with 15n hid = is chosen as optimal, because the training is
faster and requires less CPU time and flops than the other
architectures. On the other hand, the net performance function
and gradients are approximately from the same order. The
trained net does not need to additional iterations during the
processing of the unknown data sets. The performance of the
BPNN filter is compared with KF for 100 Monte Carlo runs.
The mean and standard deviation of the averaged for all runs
absolute values of the tracking errors BPNNς and KFς are
shown in Table II. The root mean-squared filter’s tracking
error is defined by

() () ()222
RMS ẑzŷyx̂x −+−+−=ζ (21)

Table III contains the Monte Carlo statistics of the root
means squared (RMS) positional errors due to recovering the
original variables after CT and NP. The net performance
functions in Case III in respect to the epoch’s number and

hidn are plotted on the top Fig. 2. The RMS tracking
positional error for BPNN during the training (scans 1,..,5)
and prediction phase (unknown data sets processing by the

- Adaptive Algorithm
- Back Propagation Neural Network
- Canonical Transform
- Initial Conditions
- Inverse Canonical Transform
- Kalman Filter
- Kinematic Model
- Monopulse Secondary
 Surveillance Radar
- Normalization Procedure
- Unnormalization Procedure

AA
BPNN
CT
IC
ICT
KF
KM
MSSR

NP
UP

a. BPNN filter with CT

ΣАА

CTMSSR
() kZ

BPNNNP ICT

IC

() k ∗Z () koZ () 1kˆ +∗X() 1kˆ o +X

() 1ko +Z

BPNN
k e

() 1kˆ +X

()kNPξ ()kBPNNζ

- ()1k +Z
Σ

() kCTξ

UP

-

Σ

KF ICTMSSR
() kZ

CT

 , , , , RQHΓΦ

() k ∗Z () 1kˆ +∗X

KM

MH Γ Φ ,,, ∗∗∗

IC

()1k +Z-

()kKFζ() kCTξ

b. Recursive KF with CT

() 1kˆ +X

364

TABLE I
BPNN PARAMETERS DURING THE TRAINING PHASE

TABLE II
MONTE CARLO RESULTS

 TABLE III
ERRORS DUE TO RECOVERING: STATISTICS

Fig. 2. The algorithm’s performances for the real track
trained net from the same track - scans 6,..,130) phases is
plotted on the bottom of Fig. 2. All the results are obtained by
Intel Celeron 500 PPGA with SDRAM 128 MB.

CONCLUSIONS
This paper has presented the algorithm for BPNN

tracking filter using canonical transform. The BPNN learning
in this case is faster than the learning without the transform
and requires fewer flops. The Monte Carlo simulations and
the results with real input data show that this neural filter
works efficiently in different environment and produces
smaller tracking error than the recursive Kalman filter. The
errors due to recovering the original variables do not affect to
the accuracy of the algorithm.

REFERENCES
[1] X. Rong Li, “Canonical Transform for Tracking with Kinematic

Models”, IEEE Trans., Aerospace and Electronic Systems, vol.
33, no. 4, pp. 1212-1223, 1997.

[2] S. Blackman, Multiple Target Tracking with Radar
Applications, Norwood, Artech House, 1986.

[3] A. Cichocki, R. Unbehauen, Neural Networks for Optimization
and Signal Processing, Stuttgart, John Wiley & Sons & B. G.
Teubner, 1993

[4] Neural Networks Toolbox – User’s Guide, Mathworks, Inc.,
1994.

[5] Monopulse Secondary Surveillance Radar System Description,
Technical Report, Cardion Inc., Report no. 131-162A.

I.

II.
0,1076

BPNN

0,37

0,670

0,0714

KF

0,0749

0,0582

0,0552

Tracking
Filter

 m ,m
xζ

I.
II.

I.
II.

I.

II.

I.

II.

I.

II.

I.

II.

 m ,
xζσ

 m ,
yζσ

 m ,
zζσ

 6,772
12,092

4,23
4,72

0,372
0,364

0,51
0,43

Case Training
I.

II.

 s ,t CPU

 .10 ,n 6
flops

 10.24,9

 10.68,5
15

14

−

−

 10.48,1

 10.11,1
12

12

−

−

Prediction

III. 0,7075

0,0730

III. 1,3534

III. 0,0940

III. 0,2301

III. 0,4401

III. 0,0344

III. 3,35 0,40 0,38

III. 6,827 0,372 0,670

 m ,m
yζ

 m ,m
zζ

 10.57,1 10− 10.57,1 10−

 10.28,1

 10.13,2
14

14

−

−

 10.40,1

 10.21,1
12

12

−

−

 10.79,2 10− 10.79,2 10−

 10.43,1

 10.68,5
13

14

−

−

 10.41,2

 10.22,1
12

12

−

−

 10.41,3 10− 10.41,3 10−

 10.75,4

 10.34,6
30

29

−

−

 10.09,9

 10.50,5
12

12

−

−

 10.31,2 10−
 10.07,2 10−

 10.01,3

 10.85,2
29

29

−

−

 10.46,7

 10.41,6
12

12

−

−

 10.95,3 10− 10.55,3 10−

 10.27,1

 10.34,6
28

29

−

−

 10.36,1

 10.37,6
11

12

−

−

 10.06,4 10− 10.65,3 10−

N
=5

00
 0,60 -0,85 0,69

-0,21 -0,44 -0,10

-0,17 -0,75 0,05

 0,11 -0,24 0,49

Case

N
=1

00 5

 5

 5

15

20

25

23

 6

 5

 5

()tr
epn Ehidn

15

15

 I.

II.

I.

 0,92 2,14 2,45

-0,57 -0,08 -0,65

 0,64 -0,65 0,49

0,0275

0,0024

0,0017

0,0011

maxµ

 2,731

12,517

14,223

25,780

 6,827

 6,772

12,092

()

 s

t pr
CPU

()

 .10

 n
6

pr
flops

14-

zyx

.10

 E E E ooo ∇∇∇

24

24

23

21

10.53,2

10.88,2

10.50,1

10.66,1

−

−

−

−

0,51

0,43

4,23

4,72

0,0031

0,0024

III. 15 5 0,0010 10.33,5 26−

 10.60,2

 10.45,1
24

24

−

−

3,19

3,19

5,17

5,71

0,45

0,46

0,48

0,47

0,403,35

0,058

0.372

0,639

0,980

0,372

0,364

0,372

()

 .10

 n
6

tr
flops()

 s

 t tr
CPU

k=
1,

..,
13

0
k=

1,
..,

50
5

m , m CT
RMSξ

-130,18.10 -141,27.10 -154,69.10 -145,38.10

m , CT
RMSξ

σ m , m NP
RMSξ

m , NP
RMSξ

σ

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20
nhid=5; nep=11
nhid=15; nep=6
nhid=20; nep=6
nhid=25; nep=6

0 20 40 60 80 100 120 140
0

0.5

1

1.5
x 10-9

nep

k

a. BPNN performance function

b. BPNN tracking positional error

E

ζRMS, m

	Back to CSII session
	Main menu

