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A BPNN Tracking Filter Using Canonical 
Transform onto the Kinematic Model  

Mimi D. Daneva and Tzanko P. Georgiev 
Abstract − An algorithm for tracking on non-maneuvering 

targets with back-propagation neural network (BPNN) is 
presented. The canonical transform and normalization 
procedure are used for pattern formulation. The algorithm’s 
performance is compared with recursive Kalman filter based on 
Monte Carlo experiment and an example using real radar data 
record in MATLAB environment. 
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I. INTRODUCTION 
The accuracy problem in radar data processing in 

Cartesian coordinates occupies an important place in track 
fusion, where the data about the target's parameters are 
obtained from several sensors. The target's kinematic model in 
this case is coupled between the coordinates. The cause dues 
to the fact that the target's positions are actually measured in 
spherical coordinates and their convertion to Cartesian 
coordinates sometimes is attended by a pseudolinear error 
coupling. In this case the track filtration and extrapolation 
using the standard proved in practice methods as recursive 
Kalman filter (KF) without an additional preprocessing in 
case of long data set size leads to poor filter's performance. 
The cause is the interdependency of the components of the 
Cartesian measurement vector from the polar range between 
the target and the sensor, which leads to non-stationary 
measurement covariance matrix and a lack of convergence of 
the KF. The canonical transform (CT) converts the coupled 
target dynamic model into a decoupled canonical form that is 
independent in respect to the time (radar sampling interval) 
and the space (the range radar-target) [1], [2]. The CT is 
obtained by simultaneously diagonalizing the noise 
covariance matrices of the kinematic model, followed by a 
spatial-temporal normalization procedure. It helps for more 
efficient implementation of the tracking algorithms. 

The track life stages are initiation, confirmation and 
deletion. Usually, the missed measurements for five sequential 
radar scans are used as track deletion criteria [2]. 

The data processing algorithms using neural network [3], 
[4] do not need to a priory knowledge about the statistics of 
the input data. BPNN initialization set all the synaptic weights 
and biases to small uniformly distributed random numbers. 
The Nguyen-Widrow hidden weight initialization procedure is 
recommended for multiple-layered perceptrons neural 
networks. It prevents premature saturation at all hidden 
neurons, which contributes the learning convergence and 
ensures more efficient training [3]. Different error back- 
propagation algorithms are well described in [3], [4]. The 
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Levenberg-Marquardt algorithm is required to evaluate only 
first-order derivatives, always is stable and needs to less CPU 
time and flops than the other training algorithms. 

In this paper an algorithm for track filtration and first 
order prediction in Cartesian coordinates using back-
propagation neural network (BPNN) is presented. The net 
training performance function (mean squared error, MSE) for 
BPNN with different number of hidden units is analyzed. The 
Monte Carlo verification of the results with recursive Kalman 
filter (KF) [2] for 100 runs is presented using MATLAB 
package. An illustrative example with real radar data record 
from Monopulse Secondary Surveillance Radar CMSSR-401 
[5] is shown. 

II. THE CANONICAL TRANSFORM 
ONTO THE KINEMATIC MODEL 

The model of the non-maneuvering target motion in 
Cartesian coordinate system is second-ordered (with nearly 
constant velocity). The associated state equations are [1], [2] 

( ) ( ) ( )kk1k ΓωΦXX +=+                         (1) 
( ) ( ) ( )kkk νHXZ +=                              (2) 

where ( ) ( ) ( ) ( )[ ]kkkk TTT
321 XXXX =  is the state vector of 

the dynamic system (the aircraft) with components the state 
vectors [ ]ii ηη= DiX  for coordinate i, i=1,2,3. Each vector 

iX  contains position iη  and velocity (the first derivative of 
the position) iηC . The symbol i marks the one of the three 
Cartesian coordinates x, y, and z and is used for notational 
simplicity. The discrete time interval is noted by k. The 
matrices w and ν (both of dimension three) are mutually 
uncorrelated vector-valued stochastic processes, each with 
zero mean, known variance and uncorrelated with ( )0X . The 

( )kω gives the presence of the velocity’s changes. The ( )kν  
models the radar measurement errors. The noise covariance 
matrices are defined by 

[ ] ( ) ( )[ ] [ ] ( ) ( )[ ]kkEr   ; kkEq T
ij

T
ij ννRωωQ ====  

where the superscript T denoted the transpose operator. The 
system matrices are defined by 

[ ];    diag 222 ΦΦΦΦ =  
[ ];    diag 222 ΓΓΓΓ =  
[ ]222 HHHH     diag=  

where 
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=
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2/T 2

2Γ ; [ ]01=2H . The letter 

T signifies the radar sampling time. 
The canonical transform (CT) onto the kinematic state 

model is obtained by simultaneously diagonalizing the noise 
covariance matrices Q and R followed by a spatial-temporal 
normalization procedure. The coupling between the 
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coordinates finds expression in the off-diagonal elements of 
the covariance matrices only. The CT is required for 
commutative matrices Q and R, i. e.  to exist their orthogonal 
matrices. In general case Q and R are not commutative, so it is 
necessary to diagonalize them.  The requirement for their 
diagonalization is both of them must be symmetric matrices, 
and R – positive definite. So, the transformation matrix M, 
which simultaneously diagonalizes Q and R, is orthogonalized 
and normalized matrix with respect to R, and is defined by 

[ ] [ ]321 eeeM == ijm                          (3) 

where 1,2,3i , =ie are a set of R-orthonormal eigenvectors, 

which correspond to the eigenvalues 3 2, 1,i ,2
i =λ , obtained 

by generalized singular value decomposition of the matrix 
[ ]  1QR − . By using the Gram-Schmidt procedure, all 

3 2, 1,i , =ie are R-orthonormalized, i. e. the following 
conditions 

3 ,2 ,1i,
i

=λ= ii ReQe                        (4) 

3 ,2 ,1j,i,R ij
T =δ=ji ee                        (5) 

are implemented. In Eq. (5) ijδ  is the Kronecker delta fun-
ction. 

After the transformation by the matrix M, the covariance 
matrices of the kinematic model become 

[ ]2
3

2
1

T ...diag~ λλ== QMMQ                  (6) 

IRMMR == T~                               (7) 
where ( )3x3I  denotes ( )3x3  identity matrix. Then, the space 
dimensionless form of the dynamic system described by Eqs. 
(1) and (2) is 

( ) ( ) ( )k~k~1k~ ωGXFX +=+                        (8) 

( ) ( ) ( )k~k~k~ νXHZ +=                             (9) 
where  

νMνωMωZMZXMX TTTT ~ ;~ ;~ ;~ ====         (10)                         
The system described by Eqs. (8) and (9) is mutually 

uncorrelated between the coordinates (x, y, z) in the sense that 
the state vector’s components and their estimations with 
respect to the detached coordinates are independent each 
other. The formulas for recovering the original variables are 

[ ] [ ] ;~ ;~ 1T1T ZMZXMX
−−

==                    (11) 

[ ] [ ] νMνωMω ~ ;~ 1T1T −−
==                      (12) 

Next the dynamic system must be transformed in relation 
to the time by setting the radar sample interval T=1. Then the 
CT of the system with Eqs. (1) and (2) is determined as [1] 

( ) ( ) ( )kk1k **** ωGXFX * +=+                  (13)    

( ) ( ) ( )kkk **** νXHZ +=                        (14) 
where all the vectors and matrices are physically 
dimensionless and  

;~ ;~ T*T* ZMZZXAMXAX ====              (15) 
                   ;~ ;T~T T*T22* νMννωMωω ====             (16) 

HHHGGFF ==== === 1T
*

1T
*

1T
*  ; ;           (17) 

where [ ]22 AAA diag= , [ ]T1diag=2A  for the second- 

order kinematic model. 

III. PROPOSED BPNN TRACKING FILTER 
The proposed tracking filter uses BPNN for track 

filtration and one-step-ahead prediction to form the estimate 
of the current and future kinematic state variables of non-
maneuvering aircraft (position and velocity) from position-
only radar measurements. The data about the target’s motion 
are presented in 3-dimensional Cartesian coordinate system. 
The kinematic model is described with Eqs. (1), and (2). The 
CT is used as additional radar data preprocessing before 
normalization procedure and the next processing with BPNN. 
For verification of the BPNN tracking filter’s performance the 
same transformed input data are processed with recursive KF 
for 100 Monte Carlo runs.  

The block diagrams of the data processing with BPNN 
and KF using CT are shown in Fig. 1.  

The optimal BPNN architecture for filtering and first 
order prediction [3] in this case includes an input layer with 

3n inp =  neurons, a hidden layer with 15n hid =  neurons, and 

an output layer with 3n out =  neurons. The number of the 
hidden units is chosen according to heuristic rule. The neurons 
in each layer are full connected with the neurons in the 
previous layer. The input and hidden units have bipolar 
sigmoidal activation functions with biases. The output units 
are linear and perform the linear combination of the hidden 
neurons’ reactions to form the estimated value of the state 
vector ( )1kˆ +∗X . The prediction error is defined as the diffe-

rence between the pattern vector ( )1k +P and ( )1kˆ +∗X  [3]. 
In general case the prediction with BPNN is described with 
the equations 

( ) ( )
( ) ( ) ( )}k],k],k              

,k[f[f[f{1kˆ

outhidin

inphidoutN

www

PX ℜ=+∗

               (18) 

( ) ( ){ }1k,,ek L −µℜ= ww                        (19) 
where outf , hidf , inpf  are the activation functions of the out-

put, hidden, and input layer neurons; inpw , hidw , outw  are 

their corresponding weight matrices. The relations Nℜ  and 

Lℜ  describe the BPNN architecture and learning algorithm. 
The net error is denoted by e, and µ is the learning rate. 

The algorithm for tracking filter with BPNN includes the 
following steps. 
Step 1. Canonical transform using Eq. (13) and Eq. (14). 
Step 2. Data normalization procedure to obtain the pattern 
vector P as 

( )
( ) 9.0

ZZ
Z8.1

minmax

min −
−
−

=
∗∗

∗∗Z
P                         (20) 

to avoid of the hard non-linearity zones of the neurons’ 
activation functions. It prevents the synaptic weights of the 
hidden units from premature saturation at the first few 
iterations. 
Step 3. BPNN initialization: The Nguyen-Widrow hidden 
weights initialization procedure is used.  
Step 4. The training data set loading: The training set is 
formed using the measurements received from the first five ra
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Fig. 1. Block diagram for track filtering and prediction using CT 
dar scans because of the track deletion criteria, i. e. the 
measurement vector ( ) 1,..,5k ,k =∗Z  is used.  
Step 5. Forward computations: Compute the net internal 
activity levels and the output signals of all the neurons in the 
layers according the Levenberg-Marquardt training algorithm. 
Step 6. Error back-propagation: Compute the vectors of local 
error gradients in the output and the hidden layer using the 
same training algorithm. 
Step 7. Iterations till the global error minimum is found or the 
maximum number of epochs or the maximum learning rate is 
achieved.  
Step 8. Load the next (unknown) data set from the same track 
with batch size 5 and go back to Step 5, Step 6 and Step 7. 
Step 9. Repeat cyclically the Steps 5 to 8 till the track end is 
found. 
Step 10. Data unnormalization procedure using the inverse 
formula of Eq. (20). 
Step 11. Recovering the original variables with inverse 
canonical transform according to Eq. (11) and Eq. (12). 

IV. EXPERIMENTAL RESULTS 
The simulated input data and real radar data record from 

Monopulse Secondary Surveillance Radar CMSSR-401 are 
used for the experiments. The radar sample time is T=5 s [5]. 
The modeled noises ( )kω , ( )kν  and the dynamic system dri-
ving input ( )ku have Gaussian distribution with zero mean 
and known variances. The Gaussian cumulative distribution 
functions of the noises are verificated with χ2−test and 
significant level .05.0=α  The acceleration standard 
deviation is g2=σω [2] according to the airworthiness for 
non-maneuvering aircrafts. The νννν(k)’s standard deviations are 

,nmi 05,0=σ
ρν ,deg 07,0=σ

θν  and feet 100
h

=σν  for 

range, azimuth and altitude, respectively [5]. The correspon-
ding driving input’s variance is assumed to be three times 
larger than the measurement error variance [2]. The original 
radar measurements are received in spherical coordinates 
range ρ in nmi, azimuth θ in deg, and altitude h in feet. They 
are transformed in Cartesian coordinates (x, y, z) each with 
dimension in meters. 

The BPNN training parameters, CPU time and flops for 
training and prediction phase are shown in Table I. They are 
averaged (denoted by the symbol “ − “) for N runs of the 
algorithm. Some neural architectures with different number of 
hidden units are investigated. The same input data for one 
simulated track chosen in random way are used for 
N=500.The different data at each run of Monte Carlo 
experiment with N=100 are used. The parameters are denoted, 
as follow: hidn  - number of hidden neurons; ( )tr

epn  - epochs; 

E  - averaged net performance function (MSE) with averaged 
gradients .E ,E ,E ooo zyx

∇∇∇  The CPU time and flops 

required for training and prediction are denoted by 
( ) ( ) ( ) ( )pr

flops
tr

flops
pr

CPU
tr

CPU n ,n ,t ,t , respectively. Three cases are consi-
dered. Case I and Case II consider the BPNN tracking filter 
with CT and without CT, respectively, using simulated data. 
Case III represents the BPNN performance with CT when an 
example real track with length 130 scans is used. The BPNN 
with 15n hid =  is chosen as optimal, because the training is 
faster and requires less CPU time and flops than the other 
architectures. On the other hand, the net performance function 
and gradients are approximately from the same order. The 
trained net does not need to additional iterations during the 
processing of the unknown data sets. The performance of the 
BPNN filter is compared with KF for 100 Monte Carlo runs. 
The mean and standard deviation of the averaged for all runs 
absolute values of the tracking errors BPNNς  and KFς  are 
shown in Table II. The root mean-squared filter’s tracking 
error is defined by 

( ) ( ) ( )222
RMS ẑzŷyx̂x −+−+−=ζ             (21) 

Table III contains the Monte Carlo statistics of the root 
means squared (RMS) positional errors due to recovering the 
original variables after CT and NP. The net performance 
functions in Case III in respect to the epoch’s number and 

hidn are plotted on the top Fig. 2. The RMS tracking 
positional error for BPNN during the training (scans 1,..,5) 
and prediction phase (unknown data sets processing by the 

-  Adaptive Algorithm
-  Back Propagation Neural Network
-  Canonical Transform
-  Initial Conditions
-  Inverse Canonical Transform
-  Kalman Filter
-  Kinematic Model
-  Monopulse Secondary
    Surveillance Radar
-  Normalization Procedure
-  Unnormalization Procedure
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MH Γ Φ  ,,, ∗∗∗
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( )1k +Z-
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TABLE I 
BPNN PARAMETERS DURING THE TRAINING PHASE

TABLE II 
MONTE CARLO RESULTS 

           TABLE III 
ERRORS DUE TO RECOVERING: STATISTICS 

Fig. 2. The algorithm’s performances for the real track 
trained net from the same track - scans 6,..,130) phases is 
plotted on the bottom of Fig. 2. All the results are obtained by 
Intel Celeron 500 PPGA with SDRAM 128 MB. 

CONCLUSIONS 
This paper has presented the algorithm for BPNN 

tracking filter using canonical transform. The BPNN learning 
in this case is faster than the learning without the transform 
and requires fewer flops. The Monte Carlo simulations and 
the results with real input data show that this neural filter 
works efficiently in different environment and produces 
smaller tracking error than the recursive Kalman filter. The 
errors due to recovering the original variables do not affect to 
the accuracy of the algorithm. 

REFERENCES 
[1] X. Rong Li, “Canonical Transform for Tracking with Kinematic 

Models”, IEEE Trans., Aerospace and Electronic Systems, vol. 
33, no. 4, pp. 1212-1223, 1997. 

[2] S. Blackman, Multiple Target Tracking with Radar 
Applications, Norwood, Artech House, 1986. 

[3] A. Cichocki, R. Unbehauen, Neural Networks for Optimization 
and Signal Processing,  Stuttgart, John Wiley & Sons & B. G. 
Teubner, 1993 

[4] Neural Networks Toolbox – User’s Guide, Mathworks, Inc., 
1994. 

[5] Monopulse Secondary Surveillance Radar System Description, 
Technical Report, Cardion Inc., Report no. 131-162A. 

I.

II.
0,1076

BPNN

0,37

0,670

0,0714

KF

0,0749

0,0582

0,0552

Tracking
Filter

   m ,m
xζ

I.
II.

I.
II.

I.

II.

I.

II.

I.

II.

I.

II.

   m , 
xζσ

   m , 
yζσ

   m , 
zζσ

  6,772
12,092

4,23
4,72

0,372
0,364

0,51
0,43

Case Training
I.

II.

   s ,t CPU

 .10 ,n 6
flops

 10.24,9

 10.68,5
15

14

−

−

 10.48,1

 10.11,1
12

12

−

−

Prediction

III. 0,7075

0,0730

III. 1,3534

III. 0,0940

III. 0,2301

III. 0,4401

III. 0,0344

III. 3,35 0,40 0,38

III.  6,827 0,372 0,670

   m ,m
yζ

   m ,m
zζ

 10.57,1 10−  10.57,1 10−

 10.28,1

 10.13,2
14

14

−

−

 10.40,1

 10.21,1
12

12

−

−

 10.79,2 10−  10.79,2 10−

 10.43,1

 10.68,5
13

14

−

−

 10.41,2

 10.22,1
12

12

−

−

 10.41,3 10− 10.41,3 10−

 10.75,4

 10.34,6
30

29

−

−

 10.09,9

 10.50,5
12

12

−

−

 10.31,2 10−
 10.07,2 10−

 10.01,3

 10.85,2
29

29

−

−

 10.46,7

 10.41,6
12

12

−

−

 10.95,3 10−  10.55,3 10−

 10.27,1

 10.34,6
28

29

−

−

 10.36,1

 10.37,6
11

12

−

−

 10.06,4 10−  10.65,3 10−

N
=5

00
  0,60     -0,85      0,69

-0,21     -0,44     -0,10

-0,17     -0,75      0,05

 0,11     -0,24      0,49

Case

N
=1

00  5

 5

 5

15

20

25

23

 6

 5

 5

( )tr
epn Ehidn

15

15

 I.

II.

I.

 0,92      2,14      2,45

-0,57     -0,08     -0,65

 0,64     -0,65      0,49

0,0275

0,0024

0,0017

0,0011

maxµ

  2,731

12,517

14,223

25,780

 6,827

  6,772

12,092

( )

  s     

t   pr
CPU

( )

 .10    

 n   
6

pr
flops

14-

zyx

.10                

 E     E     E ooo ∇∇∇

24

24

23

21

10.53,2 

10.88,2 

10.50,1 

10.66,1 

−

−

−

−

0,51

0,43

4,23

4,72

0,0031

0,0024

III. 15 5 0,0010 10.33,5 26−

 10.60,2

 10.45,1
24

24

−

−

3,19

3,19

5,17

5,71

0,45

0,46

0,48

0,47

0,403,35

0,058

0.372

0,639

0,980

0,372

0,364

0,372

( )

 .10    

 n   
6

tr
flops( )

  s     

 t  tr
CPU

k=
1,

..,
13

0
k=

1,
..,

50
5

m , m CT
RMSξ

-130,18.10  -141,27.10  -154,69.10 -145,38.10  

m ,  CT
RMSξ

σ m , m NP
RMSξ

m ,  NP
RMSξ

σ

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20
nhid=5; nep=11 
nhid=15; nep=6 
nhid=20; nep=6 
nhid=25; nep=6 

0 20 40 60 80 100 120 140
0

0.5

1

1.5
x 10-9

nep 

k 

a. BPNN performance function 

b. BPNN tracking positional error 

E 

ζRMS, m 


	Back to CSII session
	Main menu

