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Abstract – This paper explores two-phase harmonic oscillator 
synchronization with referent oscillator which amplitude and 
phase are modulated by two arbitrary smooth functions, 
respectively. Employing discrete-time variable structure control 
system, which organize quasi-sliding mode along intersection of 
two appropriate sliding surfaces, pursues synchronization 
between modulated and controlled oscillator. Discrete-time 
relay-type variable structure controllers are proposed and quasi-
sliding reaching and existence conditions are derived, verified by 
experimental results. 
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I. INTRODUCTION 

Considerable application of harmonic oscillators in many 
fields of electrical engineering, such as, power converters, 
supply systems, laboratory research, system examinations, 
electric drive control, instrumentation etc., emphasizes them 
as fundamental devices. Basic demands for oscillator 
reliability are: high quality amplitude and frequency 
regulation and stability, short oscillation build-up time and 
low-level of harmonic distortions. An adequate approach to 
oscillator synthesis meeting all above-mentioned requirements 
is an introduction of variable structure control system (VSCS) 
leading to a sliding motion on a desired surface [1], originally 
proposed by Sira-Ramirez in Van der Pol oscillator control, 
[2]. It has been shown that sliding mode along certain 
elliptical trajectory in system state space provides an ideally 
sinusoidal response with desired amplitude. Following this 
concept a systematic approach to synthesis of two and three-
phase harmonic as well as relaxation oscillators, has been 
proposed in [3,4]. 

Further research has been directed to regulation of both 
amplitude and phase of harmonic oscillators using sliding 
mode control. It has been shown in [3,5] that control system 
enhancement by introduction of additional control signal and 
related sliding surface responsible for phase regulation 
provides absolute oscillation control. Desired amplitude and 
phase is obtained by eventual sliding mode on the intersection 
of two appropriate nonlinear sliding surfaces. This feature is 
essential to oscillator synchronization and has been employed 
in two and three-phase harmonic oscillator synchronization 

[6,7]. All desirable properties characterizing sliding mode is 
preserved by this control strategy resulting in high-quality 
synchronization in finite time featuring high accuracy of both 
amplitude and phase, invariance to parameter perturbations 
and external disturbances and great harmonic clearness, [7]. 

This paper investigates a further extended synchronization 
problem, i.e. synchronization with modulated two-phase 
harmonic oscillator. Oscillation amplitude and phase are 
modulated by two arbitrary smooth functions, respectively. 
Sliding mode control approach is employed in handling this 
synchronization task. Discrete-time relay-type VSCS is 
suggested which organizes quasi-sliding motion along the 
intersection of two sliding surfaces, individually providing 
amplitude and phase synchronization. 

II. CONTROL SYSTEM DESCRIPTION 

In order to provide oscillation amplitude and phase 
regulation, which is essential to synchronization with a 
referent oscillator, a conservative two-phase harmonic 
oscillator 
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which amplitude and initial phase depend on initial conditions 
whereas oscillation frequency is determined by system 
parameter 0ω , has been enhanced in [6] by introduction of 
control signals in the following manner: 
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Influence of the control signals on the oscillation amplitude 
and phase is more explicit in polar coordinate system. Using 
coordinate transformation 
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controlled oscillatory system (2) is transformed to 
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It is obvious that controlled system (2) provides completely 
decoupled amplitude and phase control, indicating that the 
proposed structure is convenient for synchronization tasks. 

A microprocessor based realization of the system (2) allows 
synthesis of the nonlinear control part using digital hardware. 
Therefore, initial continuous-time model (2) is represented in 
vector form 
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where [ ]21
T , xx=x  and [ ]21

T ,cc=c . Vector c  is evaluated in 
discrete time instants, remaining constant during sampling 
period ( ) ( )kTt cc = , ( )TktkT 1+<≤ , 0Nk ∈ , according to 
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Oscillator discrete-time model in polar representation, 
which is necessary for system analysis, is formed using Eq. 
(3) and discrete-time state space model 
  ( ) ( ) ( ) ( ) ( )kTkTk cFxEx +=+1 , (7) 
obtained performing standard discretisation method. Time 
discretisation process has considerably extended model 
complexity and violated decupled control property, making 
system analysis more complicated. Since very small sampling 
period T  is feasible nowadays due to powerful 
microcontrollers, it is quite reasonable to use model 
approximation in order to simplify system analysis. Model 
approximation is implemented using Taylor polynomial. A 
differentiable function ( )xf  in a vicinity of point a  can be 
approximated by first order Taylor polynomial 
  ( ) ( ) ( )( )axafafxT −′+=1 , (8) 
committing an approximation error which is defined in 
Lagrange form as 
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In the case of study, approximation of functions representing 
oscillator discrete-time polar model ( ) ( )12

1 += krTf  and 
( ) ( )12 +θ= kTf  is performed in a vicinity of point 0=T . The 

resulting approximated model is obtained according to Eq. (8) 
as 
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Using Eq. (9), modeling error becomes 
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indicating that if small sampling period T  is applied, 
modeling error is negligible and the discrete-time model (10) 
is valid. Model decoupling in Eq. (10), as in continuous-time 
model (4), is here an approximation result. 

Control objective is to synchronize two-phase harmonic 
oscillator (10) with a referent oscillator, which amplitude and 
phase are modulated. Output signals of a referent oscillator 
may be described as 
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where oscillation amplitude ( )trr  and phase ( )trθ  are 
arbitrary smooth functions. In order to attain amplitude and 
phase matching, let the switching functions be 
  ( ) ( ) ( ) ( ) ( )kkkskrkrks rr θ−θ=−= 2

22
1 ,)( . (13) 

Obviously, if its possible to ensure an eventual sliding mode 
on the intersection of sliding surfaces 01 =s  and 02 =s , 

synchronization requirements ( ) ( )trtr r=  and ( ) ( )tt rθ=θ  will 
be met. Oscillation amplitude and phase of referent as well as 
controlled oscillator can be evaluated according to 
transformation (3) using sampled outputs. Now, control laws 
( )ku1  and ( )ku2  should be determined which provide the 

desired sliding motion, regarding the fact that control design 
can be performed separately. However, digital realization of 
control algorithm, due to inherent time delay caused by time 
discretisation process, may allow only existence of quasi-
sliding mode [8], where system trajectories are constraint in 
some small bounded vicinity of sliding surface. This reduces 
system performance quality. 

III. AMPLITUDE SYNCHRONIZATION 

Quasi-sliding motion implies that system trajectory is in 
some bounded vicinity of sliding surface 01 =s , which is 
called quasi-sliding region 1S . Therefore quasi-sliding 
existence condition requires quasi-sliding region 1S  to be an 
invariant set, i.e. every system motion, described by Eq. (10), 
which has arrived into 1S  in some time instant Tkt 00 = , 
remains in the region 1S  for every 0kk > , Nkk ∈0, . 

According to Eqs. (10) and (13), system motion toward the 
first sliding surface is 
  ( ) ( ) ( ) ( ) ( )kukTrkaksks 1

2
11 211 −++=+ ∆∆∆∆ , (14) 

where ( ) ( ) ( )krkrka rr
22 11 −+=+∆∆∆∆ . In order to conduct 

system motion (14) towards the sliding surface by means of 
control signal, prediction of reference amplitude ( )1+ka∆∆∆∆  is 
needed. This information is unavailable so control signal 
( )ku1  is chosen as reley-type function in the form 

  ( ) ( ) ( )( ) ( )( )kskTrkaku 1
2

01 sgn2/∆+α= , (15) 
under constraint ( ) 0≠kr , Nk ∈∀ . Since only initial moment 
is critical, constraint is reduces to ( ) 00 ≠r , implying 
simultaneously nonzero initial conditions which is not too 
restrictive. In case of Eq. (15), (14) becomes 
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Suppose that ( ) += 01 ks , that is ( ) 01 >ks  and system 
trajectory is infinitely close to the surface 01 =s . Quasi-
sliding existence requires system trajectory to cross over the 
sliding surface during the next time interval. Hence, Eq. (16) 
yields 
  ( ) ( ) ( ) ( ) 0211 0

2
1 <α−∆−+∆=+ kTrkakaks . (17) 

Fulfillment of inequality (17) requires 
  ( ) ( )kTrkd 2

10 2/>α , (18) 
where ( ) ( ) ( )kakakd ∆−+∆= 11 . 

Suppose now that ( ) −= 01 ks . Respecting the requirement 
of crossing the sliding surface during the next time interval, 
condition ( ) 011 >+ks , according to Eq. (16), becomes 

  ( ) ( )kTrkd 2
20 2/−>α . (19) 



were ( ) ( ) ( )kakakd ∆++∆= 12 . 
Differences in Eqs. (18) and (19) may be treated as 

disturbances, which are bounded with limits ( ) ii kd µ≤ , 
2,1=i , in case of smooth amplitude ( )trr  reference. 

Inequality satisfying both cases constitutes quasi-sliding 
existence condition 
  ( ) 2

min0 2/,max Tr21 µµ>α . (20) 
For small sampling period it can be regarded 
( ) ( )kaka ∆∆∆∆∆∆∆∆ ≈+1 , which demonstrates that in practical 

realizations controller parameter 0α should be set as a small 
value. 

Quasi sliding region 1S  represents the range of function 
( )11 +ks  variation and may be depicted as 

  ( ) ( ) ( ) 0
2

max210
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IV. PHASE SYNCHRONIZATION 

The same reasoning is employed in analysis and design of 
the system motion toward and within the quasi-sliding region 

2S , defined in the same way as 1S . 
System motion toward the surface 02 =s  is defined, using 

Eqs. (10) and (13), as 
  ( ) ( ) ( ) ( )( )Tkukpksks 2022 11 +ω−++=+ ∆∆∆∆ , (22) 
where ( ) ( ) ( )kkkp rr θ−+θ=+ 11∆∆∆∆ . Control signal ( )ku2  is 
chosen as relay-type function 
  ( ) ( )( ) ( )( )ksTkpku 202 sgn/∆+β= , (23) 
from the same reasons as in amplitude synchronization, 
transforming Eq. (22) into 
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If ( ) += 02 ks , requirement for system trajectory to cross the 
sliding surface during next sampling period ( ) 012 <+ks  
yields condition 
  ( ) 030 / ω−>β Tkd , (25) 
where ( ) ( ) ( )kpkpkd ∆∆∆∆∆∆∆∆ −+= 13 . In case of ( ) −= 02 ks , 
system trajectory will cross the sliding surface during the next 
sampling interval if ( ) 012 >+ks , imposing 
  ( ) 040 / ω+−>β Tkd , (26) 
where ( ) ( ) ( )kpkpkd ∆++∆= 14 . Disturbances ( )kdi , 

4,3=i , for smooth phase reference ( )trθ  are bounded with 
limits ( ) ii kd µ≤ , 4,3=i . Finally, quasi-sliding existence 
condition, as a conjunction of inequalities (25) and (26), is 
described as 
  ( )04030 /,/max ω+µω−µ>β TT . (27) 
Small sampling period allows further simplification of 
condition (27) because of presumption ( ) ( )kpkp ∆∆∆∆∆∆∆∆ ≈+1 . 

Variation of function ( )12 +ks  defines quasi-sliding region 

2S , which can be, according to Eq. (24), depicted as 

 ( ) ( ) ( ) TTkdksTTkd 0042003 1 β+ω−<+<β−ω− . (28) 
Limits of disturbances ( )kdi , 41÷=i , are proportional to 

period T  affecting the width of regions 1S  and 2S , which 
determine amplitude and phase tracking errors. To gain high 
system accuracy, sampling period T  should be as small as 
possible. 

V. REACHING OF THE QUASI-SLIDING REGIONS 

Arrival into quasi-sliding regions iS , 2,1=i  from an 
arbitrary initial point in finite number of sampling intervals, 
will be proved simultaneously using contradiction principle. 
Assume that system trajectories never reach regions iS . 
Hence, if ( ) 00 >is , then ( ) 0>ksi , 2,1=i , Nk ∈∀ . 
Evolving recurrent relations (16) and (24), ( )ksi  with respect 
to initial value can be expressed as 
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Series with common elements (29) and (30) are monotonously 
decreasing and bounded in case of conditions (18) and (25), 
respectively. According to theorem on monotonous series 
convergence, limit values ( ) ∞∞→

= iik
skslim  must exist. Using 

this, Eqs. (29) and (30) can be rewritten as 
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Obviously, arrays (31) and (32) are convergent and according 
to Cauchy array convergence criterion their common elements 
must tend to zero. Hence, ( ) ( )( )irid

iT
2

12
1

0 /lim
∞→

=α  and 

( ) 03
1

0 lim ω−=β
∞→

id
iT , which are in contradiction with the 

derived conditions (18) and (25), respectively. Therefore, the 
assumption made above is incorrect and system trajectories 
will reach quasi-sliding regions iS  from an arbitrary initial 
point in finite number of sampling intervals. Consequently, 
conditions (20) and (27) are proved to be reaching conditions 
as well. 

VI. EXPERIMENTAL RESULTS 

The designed discrete-time VSCS ensuring synchronization 
has been examined experimentally using two-phase harmonic 
oscillator controlled by a microprocessor. Two-phase 
harmonic oscillator (5) with natural frequency rad/s60 =ω  
has been created by means of operational amplifiers. Two-
phase referent signals, with modulated amplitude and phase 
(12), have been generated by the microprocessor. In the case 
of study amplitude and phase modulation has been chosen as 
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where signal parameters have been selected as follows: 

rad/s.2rad,8.1rad/s,5.7rad,5.0
rad/s;14.3V,4.0rV,9.0

prrr0

ar0

=ω=θ∆=ω=θ
=ω=∆=rr

Discrete-time VS controllers has been designed according to 
Eqs. (6), (15), and (23). Controller parameters have been set 
to 10 =α  and 5.10 −=β , regarding derived conditions (20) 
and (27). Sampling period has been sT µ= 250 . 

Switching functions ( )ts1  and ( )ts2  are shown in figure 1. 
System trajectory first reaches quasi-sliding region 1S , and 
remaining within reaches region 2S . Thus, an eventual quasi-
sliding mode occurs in a vicinity of the intersection of sliding 
surfaces 01 =s  and 02 =s . Dimensions of the quasi-sliding 
regions determine amplitude and phase error. Data analysis 
has shown that amplitude relative error is less than 0.6 %, 
whereas phase absolute error is less then 0.02 rad. Figure 2 
shows referent signals ( )txr1 , ( )txr 2  and state coordinates 
( )tx1 , ( )tx2 . It can be noticed that controlled oscillator output 

signals are successfully synchronized with the referent 
signals. Control signals are shown in figure 3. 

 
Fig. 1. Switching functions 

 
Fig. 2. Output signals 

 
Fig. 3. Control signals 

VII. CONCLUSION 

Synchronization of two-phase harmonic oscillator with 
modulated amplitude and phase has been investigated in this 
paper. It has been shown that proposed discrete-time reley-
type VSCS, leading to eventual quasi-sliding regime in a 
small bounded vicinity of intersection of two sliding surfaces, 
successfully provides high quality synchronization. Small 
sampling time and proper choice of controller parameters 
significantly narrows quasi-sliding regions resulting in high 
accuracy of both amplitude and phase. Experimental results 
support the presented sliding mode based synchronization 
method and verify the designed discrete-time variable 
structure controllers. 
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