A New Approach for System-level Architecture
Exploration

Vladimir D. Zivkovié¢, Pieter van der Wolf, Ed Deprettere, Erwin de Kock

Abstract— In this paper, we present a new design-space
exploration approach which we call the symbolic program
approach. The symbolic program approach is based on both
the trace driven approach and the control data flow graph
approach. As expected, the trajectory of the symbolic pro-
gram approach appears somewhere in-between the two ex-
tremes mentioned above. Thus, it leads to the shorter simu-
lation time while it can still give fairly accurate performance
numbers. Moreover, it produces results that can be readily
taken as input for further design.

Keywords— System-level, design-space exploration, traces,
CDFG, symbolic programs.

I. INTRODUCTION

ESIGNERS of single-chip signal-processing systems

experience two conflicting trends: The transistor
count of SoCs is exponentially growing - allowing ever in-
creasing complexity of applications - and the design time
and cost are forced to decrease because of highly compet-
itive consumer application markets. A promising trend
in SoC design is to move away from detailed cycle accu-
rate abstraction levels, at least during the initial design
stages, and to focus on system-level platform-based explo-
ration and design methodologies that rely on libraries of IP
components. Thus, System Level Methodologies and Tools
(SLMT) must open the way to early and effective explo-
ration of large design spaces, as opposed to Cycle Accurate
Level approaches where a walk through the design space
is tedious and costly. Such explorations enable quick eval-
uation of alternative designs and help to gain confidence
for particular design choices early on with relatively small
investments.

A. Related Work

In SPADE [9] applications and architectures are mod-
elled in such a way that mapping of applications onto archi-
tectures, prior to architecture/application co-simulation,
can be done easily. The co-simulation is trace-driven (TD):
The execution of the application generates traces of sym-
bolic instructions that are interpreted by the architecture
that reveals timing behaviour. Since the architecture does
not process the actual data, the TD co-simulation is fast.
Several case studies [1] have shown that this approach is
quite successful.

A similar approach was presented by Lahiri [2]. Their
approach gives fast performance analysis of bus-based SoC

Vladimir D. Zivkovi¢ and Ed Deprettere are with Leiden Institute of
Advanced Computer Science, Leiden University, Leiden, the Nether-
lands. E-mail: lale@liacs.nl

Pieter van der Wolf and Erwin de Kock are with the IST/ESAS
group, Philips Research Laboratories, Eindhoven, the Netherlands.

communication architectures. Starting from application
graphs of symbolic instructions, and architecture specifica-
tions, mapping of applications onto architectures is done by
deriving a non-executable graph-like representation with-
out control information. This system model representation
is compact and the scheduling of graph-nodes (augmented
symbolic instructions) during the system simulation is rel-
atively simple.

In the COSY (COdesign Simulation and SYnthesis) ap-
proach [8], designers can, starting from a functional spec-
ification, do communication refinement and design-space
exploration using performance models, and efficiently get
to an optimal implementation. Furthermore, they can ef-
fectively exchange IPs because of a clear separation of func-
tionality and architecture, as well as the separation of IP
behaviour and communication.

In the Task Concurrency Management (TCM) approach
[4] the objective is to provide a systematic exploration of
design spaces at the higher levels of abstraction and to
provide better schedules of the system tasks. TCM is tar-
geting more towards system-level synthesis than system-
level exploration. However, the TCM reasoning about a
compact representation that contains “the most relevant”
system information can be useful for design-space explo-
ration. Particularly, in the TCM approach the system-
model is specified in a combined Multi Thread Graph -
Control Data Flow Graph (MTG-CDFG) model [5]. This
model gives sufficient information for concurrency extrac-
tion and code transformations, which result in better sys-
tem performances.

II. PROBLEM STATEMENT

SLMTs are not yet mature enough and they can not
achieve sufficiently high levels of confidence to be applied in
design- specific cases. Present inaccuracies originate from
abstractions of crucial system behaviours (e.g., using ab-
stract read and write constructs instead of the more re-
fined communication and synchronisation primitives [3]);
from insufficient support of a designer’s mapping strate-
gies (e.g., poor modelling of intra-task concurrency [4]);
and from sometimes severe restrictions in the number of
Models of Computation (MoC) that are supported (e.g,
non-deterministic behaviour that is lacking [6], [5]). One
of the challenges in system-level Design Space Exploration
(DSE) is to achieve high levels of confidence in the per-
formance numbers that are collected during quantitative
performance analysis.

Improvement of the accuracy is the first but not the only
requirement that system-level methodologies must satisfy.



It is also necessary that system-level methodologies con-
nect well with methodologies used for detailed design (the
“state-of-the-art” shows that this connectivity is not always
satisfactory in SLMTSs). Moreover, SLMTs should allow
incremental refinement of the high-level architecture and
mapping models. The incremental and “un-interrupted”
flow from SLMTs to detailed design is an additional chal-
lenge in system-level design and DSE.

A. Defining the Scope

We are interested in platform-based system-level design
for streaming applications. Due to the previous, architec-
tures we want to explore are heterogeneous, and, therefore,
hard to program and/or evaluate [15]. We find that, in or-
der to deal with these issues efficiently, we need to enable
the separation of concerns, i.e., separation of application
modelling, architecture modelling, and mapping [7]. We
also find that we need a MoC that matches target media
architectures very well. Such model is the Kahn Process
Network (KPN) MoC [11]. The KPN MoC is based on con-
current processes (being sequential inside) that communi-
cate in a First-In-First-Out (FIFO) manner. The matching
is the more so when the KPN model is enhanced with non-
determinism modelling capabilities as available in the YAPI
tool [6] which provides a select operation that explicitly
models the influence of the scheduling on the application
execution.

There are two major directions that can be followed
starting from this point: (1) Exploration of architectures
and mappings driven by application models, where the aim
is to obtain performance numbers starting from the speci-
fication of the application models, or (2) system synthesis
driven by application models, where the aim is to generate
the source code of an implementation from the application
specification. In this paper we follow the first direction,
i.e., system-level DSE. However, we aim to do it in such
a way that the exploration trajectory connects well to the
trajectory for system synthesis.

III. MAPPING APPROACHES

A crucial step in DSE is the mapping of application mod-
els onto architecture models in order to evaluate the perfor-
mance of different application-architecture combinations.
However, the mapping as a single-step procedure is hardly
possible but rather should consist of a sequence of mapping
steps, because application and architecture models never
match ideally. The order in which these steps are taken is
important, since the impact on performance improvements
or cost reductions may be depending on it. As a result,
application-to-architecture mapping is a concept that can
be translated into more than one mapping approach.

A key issue while distinguishing among the exploration
based mapping approaches is which representations of the
system are used during the mapping steps. That is, which
aspects of the system are captured in a description that is
transformed in the mapping process.

We have identified and compared two extreme map-
ping approaches that can be taken in an exploration con-

text. We call these approaches the Trace Driven (TD) ap-
proach ([9], [2]) and the Control Data Flow Graph (CDFG)
approach (based on [12], [4]). We have also identified
third hybrid approach, which we call the Symbolic Pro-
gram (SP) approach. The SP approach is positioned be-
tween these two extremes. The main differences are in
terms of functionality (executability) of representations
and existence of control inside of representations. Table I
shows more compactly which characteristics are (not) sup-
ported in which mapping representations (and, implicitly,
approaches). Note that there is the fourth representation
we have shown in Table I, too. This is the Data-Flow
Graph (DFG) representation [14]. However, DFGs are out
of the scope of this paper.

In the next three subsections, we present the three ap-
proaches, as well as a comparison among them.

TABLE I
APPROACHES MAPPED ON THE EXECUTABILITY-AND-CONTROL MATRIX.

Ezecutable—
Controll H YES NO
YES CDFG code | Symbolic Program
NO DFG code Symb.Instr.Trace

A. TD Mapping Approach

In the TD approach, an application model is executed
on a single data set. Behaviours in the processes of the
application model can be abstracted by generating for ev-
ery channel-read, every channel-write, and every function
in the process a symbolic instruction read, write, and exe-
cute, respectively. These symbolic instructions are sent to
an application trace in the order in which they are gener-
ated. These traces drive the architecture components in
a non-functional architecture model in which the symbolic
instructions are interpreted in terms of performance num-
bers, such as latency, throughput, resource utilisation, bus
contention, etc. The TD approach is visualised in Fig-
ure 1 (left part). A trace generator executes the YAPI
model using a particular data set and generates execution
traces. For each process a trace is produced. A mapping
layer takes the application traces as its input and produces
transformed traces, the architecture traces, that are driving
the components of the non-functional architecture model.
If more than one trace drives a single component (many-
to-one mapping), then run-time scheduling may be applied
in this component. Assignments are otherwise static.

The TD approach is suited for simulation of determin-
istic applications. However, if a non-deterministic ap-
plication is to be mapped onto an architecture, and an
application-architecture co-simulation is to be performed,
then the trace driven simulation is more complex. The rea-
son is that the application traces may now depend on the
actual schedules used during architecture simulations. Ad-
ditionally, a serious problem with the TD approach is that
the refinement of the application trace in the mapping layer
is severely restricted because the application trace does not



contain symbolic instructions for control expressions, such
as branching, selection, and repetition. Moreover, infor-
mation about dependency or in-dependency of application
primitives is not preserved in the application trace. Al-
though more information could be added to the basic read,
write, and execute instructions in the TD traces, it may
not always be natural to do so, because of the TD approach
feature that it operates on only a single set of data.

B. CDFG Mapping Approach

While the TD approach was there as a DSE approach,
the CDFG approach was not. We had to pull the CDFG
approach out of the low-level design [12] and to place it
at system-level in order to make the comparison. In the
CDFG approach, the application model is captured in a
representation that preserves the functionality of all the
application tasks, including control constructs. These rep-
resentations take the form of Control Data Flow Graphs
(CDFGs) [12]. As shown in Figure 1 (right part), an appli-
cation CDFG is derived by parsing the source code. Then,
the mapping layer takes as input the application CDFG,
and produces a transformed CDFG that is used in the ar-
chitecture simulation. During the execution of the archi-
tecture model, run-time scheduling may also be performed.
Since functionality has been preserved in the mapping pro-
cess, actual data sets can now be processed during architec-
ture simulations. This may enhance the accuracy of these
simulations.

The final objective of this approach is to obtain a source
code that can be easily transfered to detailed design. In our
opinion the trajectory of the TCM approach [4] comes close
to the CDFG approach, be it that the nature of the control
constructs is still static (cyclo-static) [5]. Similarly to the
CDFG transformations (transformation steps), the TCM
approach includes chained activities. These activities are
performed on the system model specified at a grey-box level
of abstraction. What the grey-box level models are doing is
hiding details that are not, at least not explicitly, related
with the concurrency and system trade-offs. Therefore,
these models are sufficiently accurate since they still have
all information needed for the system synthesis.

In contrast to traces, CDFGs have to be first compiled
by a cross-platform compiler in order to be loaded into the
architecture simulator. As a consequence of operating on
CDFGs, manipulating CDFGs is more complex than ma-
nipulating traces. The reason is simply due to the fact
that CDFGs can (and usually do) contain hierarchy, re-
cursion, and cycles. In addition, CDFGs are more fine
grained than traces used in the TD approach. Ultimately,
the CDFG simulation becomes as detailed as instruction
set simulation, and hence simulation times grow rapidly.

C. A Hybrid Mapping Approach - Symbolic Program

The two approaches we mentioned so far can also be
qualified as follows: in the trace driven approach the map-
ping steps transform traces, whereas in the CDFG ap-
proach the mapping steps transform CDFGs. In both ap-
proaches the architecture models can have varying degrees

of abstraction. The CDFG approach somewhat resembles
a flow for system design, as the transformed CDFGs may
be used to generate refined application code that can be
used upon implementation. On the other hand, the TD
approach is more exploration specific and does not pro-
duce refined application code that can be used in detailed
design. Hence, the TD approach helps the architect to gain
insight and evaluate design alternatives, but does not yield
mapped code for implementing the selected alternative.

Given the pros and cons of both approaches, it is nat-
ural to look for an approach that is somehow in between
these two extremes, i.e., that is suitable for both explo-
ration and design purposes while offering sufficient accu-
racy and high simulation speeds for effective explorations.
We have already noticed earlier that this would imply that
additional (control) information would have to be inserted
in the trace. This, however, would boil down to move from
symbolic instructions to Symbolic Programs (SP). On the
other hand, in an exploration context, we would still like to
simulate architecture organisations in a trace driven way,
due to the high simulation speed of the TD approach. Re-
member that a major property of the TD approach is that
data is not processed in the architecture model. Therefore,
symbolic instructions cannot simply be replaced with SP,
since control in the SP needs to be resolved upon architec-
ture simulation. However, the combination of control con-
struct outcomes for a particular data-set (trace of control
outcomes) can be provided by an execution of the applica-
tion model so that with this information traces can again
be generated from the SP. This being the case, we propose
a novel mapping approach for DSE which is depicted in
Figure 1, and is as follows.

The SP approach is based on two mapping model compo-
nents: one that provides the control outcome information
in a TD manner, and the other that provides SP code,
which is a compact CDFG-like representation of a YAPI
process. The control outcome trace is needed since SPs
are not executable but do contain control constructs (see
Table I). The transformation steps are denoted as trace
transformations and SP (or code) transformations in Fig-
ure 1. The transformations apply the techniques needed to
support refinement of both the control outcome trace and
the symbolic program. The more refined the SPs and the
control traces that drive the architecture model are, the
more accurate the results will be.

Figure 1 also shows the positioning of the three ap-
proaches with respect to accuracy and simulation speed.
As a hybrid solution the SP approach contains the control
information while the TD approach does not. This makes
possible that the cost of the control can be included in the
architecture simulation. Also, the non-determinism can be
handled more easily than in the TD approach. On the other
hand, the control does not need to be fully implemented,
which is beneficial compared to the CDFG approach. Also,
transforming the SPs is easier than transforming CDFGs,
since they are more compact. Therefore, the SP approach
represents a DSE approach where designers can (1) perform
design-steps as in the case of detailed design (indicated



Application model (YAPI)

(annotated) YAPI code

YAPI (source) code

Data =—p-

TRANSFORMATION STEPS

4 N\

Ctrl. Trace
Generator

Ctrl. Trace

Transformations

SP Approach

f Architecture ;
H Simulator q

Symb. Prog.
Generator

Symb. Prog.
Transformations

Instruction
. Stream

Trace i
Generator q

ACCURACY

Low & High

Fig. 1.

with dashed lines in Figure 1), (2) run fast simulations of
architectures being explored, and (3) have more accurate
numbers than in the case of the TD simulations [9], [2].

IV. AN ILLUSTRATIVE EXAMPLE

The SP-based model we introduced in [16] can be used
for modelling and simulation of design cases where the TD-
based model [9] can not. We support the previous claim
with an example of mapping an affine nested loop pro-
gram (ANLP) process with no control-data dependencies
on top of the unit instantiated from the SP-based model.
We choose such program deliberately because we want to
show the impact of this unit on the execution time. We
want to underline that this does not limit the usage of the
SP-based model only on such applications. We move the
ANLP process through some of the code (SP) transforma-
tions mentioned earlier.

Figure 2 part 1 shows the CDFG of the ND5 process.
This CDFG is a visualisation of the SP produced by the
SP Generator (see Figure 1). The SP can be transformed
further into the other SP with the VLIW-like execution of
independent reads, writes, and executes allowed (see Fig-

The SP approach -

SIMULATION SPEED

High - Low

Hybrid mapping approach

ure 2 part 2), or even transformed into the another SP
that supports both the VLIW-like execution and software
pipelining [10] (see Figure 2 part 3).

Let us now consider that the processing unit operates
in the “backwards compatible mode,” or, in other words,
that we use the Trace Driven execution model that we feed
with a sequential trace. If we run the previously described
SPs on-top of such a model the performance numbers will
show no difference. The performance numbers we have
mentioned here represent the amounts of execution times
in each case. However, if the unit with more flexibility than
the previous one is employed, the relative improvement is
as illustrated in Figure 3. Note that one should not inter-
pret these numbers as the performance improvements, but
rather as an improvement of the modelling flexibility of the
system-level processor model. The improvements of flexi-
bility for the SPs in Figure 2 parts 2 and 3 are given in Fig-
ure 3 as i1(z) and i2(x), respectively. The improvements
depend on a set of parameters, from which we choose to
expose the “communication-budgets versus computation-
budgets” ratio'. As one can see, the improvement can

1'We assume delays associated with R and W primitives are identical



Fig. 2. The CDFGs of ND5 before and after code transformations
being applied

vary between 0 and 0.76 with respect to the type of the
processing element being used in system-level simulation.
This means that absence of modelling features can seriously
jeopardise the simulation accuracy.

improvement

0 L L

0.1 1 10 100
communication vs. computation

Fig. 3. The relative improvement between 1. and 2., and 1. and 3.

V. CONCLUSIONS

Starting from previous work based on the TD approach
[9], we identified the “opposite” DSE approach which we
call the CDFG approach. After searching for pros and
cons of these two extreme approaches, we proposed a new
hybrid mapping approach for DSE - the SP approach -
which is the main contribution of this paper. The main
advantages of the proposed SP solution are that (1) the
important characteristics of both extreme approaches are
preserved (namely, the fast TD-based simulations, and the
CDFG control constructs), and consequently (2) that weak

aspects of both extreme approaches are improved (namely,
the accuracy of the TD approach, and the inefficiency of
the CDFG approach). This yields a DSE approach that is
both accurate and efficient, while it connects well to more
detailed design trajectories.

ACKNOWLEDGMENTS

This work was performed in part in the Archer project,
funded by Philips Semiconductors. We want to tank Todor
Stefanov (Leiden University) and Ondrej Popp (Philips Re-
search Laboratories) for their contributions to this paper.

REFERENCES

[1] T. Stefanov et al., ”System Level Design with Spade: an M-JPEG
Case Study,” in Proc. IEEE/ACM ICCAD’01, San Jose, CA,
Nov. 4-8 2001, pp..

[2] K. Lahiri, A. Raghunathan, and S. Dey, "Fast Performance Anal-
ysis of Bus-Based Systems-On-Chip Communication Architec-
tures,” in Proc. IEEE/ACM ICCAD’99, San Jose, CA, Nov. 7-11
1999, pp. 566-572.

[3] P. Lieverse, P. van der Wolf, and E. Deprettere, ”A Trace Trans-
formation Technique for Communication Refinement,” in Proc.
International Symposium on Hardware/software CODES’01,
Denmark, Apr. 2001, pp..

[4] C. Wong, P. Marchal, and P. Yang, ”Task concurrency manage-
ment methodology to schedule the MPEG4 IM1 player on a highly
parallel processor platform,” in Proc. International Symposium
on Hardware/software CODES’01, Denmark, Apr. 2001, pp..

[5] N. Cossement, R. Lauwereins, and F. Catthoor, ?DF*: An ex-
tension of synchronous dataflow with data dependency and non-
determinism,” in Forum on Design Languages, Tuebingen, Ger-
many, Sep. 2000, pp..

[6] De Kock et al., ”YAPI: Application modelling for signal process-
ing systems,” in Proc. of DAC’2000, LA, USA, June 2000, pp..

[7] B. Kienhuis, et al., ”An Approach for Quantitative Analysis of
Application-specific Dataflow Architectures,” in Proceedings of
ASAP’97, July 14-16, 1997.

[8] Jean-Yves Brunel et al., ”COSY Communication IP’s,” in Pro-
ceedings of DAC’2000, Los Angeles, USA, June 2000.

[9] P. Lieverse et al., ” A methodology for architecture exploration of
heterogeneous signal processing systems,” in Proc. 1999 Work-
shop on Signal Processing Systems, Taipei, Taiwan, Oct. 1999.

[10] Monica Lam, ”Software Pipelinening: An Effective Scheduling
Technique for VLIW Machines,” in Proc. of SIGPLAN’88 Con-
ference on Programming Language Design and Implementation,
Atlanta, Georgia, June 22-24, 1988.

[11] G. Kahn, "The semantics of a simple language for parallel pro-
gramming,” Information processing 74 - North-Holland Publish-
ing Company, 1974.

[12] Wayne Wolf, Computers as Components - Principles of Embed-
ded Computing System Design, Morgan Kaufmann Publishers,
2001.

[13] J. Hennessy, D. Petterson, Computer Architecture - A Quanti-
tive Approach, Morgan Kaufmann Publishers, 1996.

[14] Keshab Parhi, VLSI Digital Signal Processing Systems - Design
and Implementation, John Wiley & Sons, 1999.

[15] S. Sriram, S. Bhattacharyya Embedded Multiprocessors -
Scheduling and Synchronization, Marcel Dekker, 2000.

[16] Vladimir D. Zivkovi¢ et al., ”Design Space Exploration of
Streaming Multiprocessor Architectures,” submitted for 2002
Workshop on Signal Processing Systems, San Diego, California,
Oct. 2002.



	Main menu
	Back to CT session

