

414

I2C Bus Controler Implementation
Dimitar Dimitrov, Anna Andonova, Nikita Dimitrov, Petar Gugutkov

Abstract - In this paper is discussed VHDL implementation of an
I2C controller in a CPLD. The I2C bus is a popular serial, two
wire interface used in many systems because of its low overhead.
The two-wire interface minimizes interconnections between IC
so they have fewer pins, and the number of traces required on
printed circuit boards is reduced. Capable of 100KHz in normal
mode and 400KHz in fast mode, each device connected to the bus
is software addressable by a unique address with a simple
Master/Slave protocol.

I. INTRODUCTION
The Inter Integration Circuit (I2C) bus is a popular serial,

two-wire interface used in many systems because of its low
overhead. All I2C-bus compatible devices incorporate an on-
chip interface, which allows them to communicate directly
with each other via the I2C-bus. This design concept solves
the many interfacing problems encountered when designing
digital control circuits.

Here are some of the features of the I2C-bus: Only two
bus lines are required: a serial data line (SDA) and a serial
clock line (SCL); Each device connected to the bus is
software addressable by a unique address and simple master/
slave relationships exist at all times; Masters can operate as
master-transmitters or as master-receivers; It’s a true multi-
master bus including collision detection and arbitration to
prevent data corruption if two or more masters simultaneously
initiate data transfer; Serial, 8-bit oriented, bidirectional data
transfers can be made at up to 100 kbit/s in the standard mode
or up to 400 kbit/s in the fast mode ;On-chip filtering rejects
spikes on the bus data line to preserve data integrity ; The
number of ICs that can be connected to the same bus is
limited only by a maximum bus capacitance of 400 pF.

I2C-bus compatible ICs allow a system design to rapidly
progress directly from a functional block diagram to a
prototype. Moreover, since they ‘clip’ directly onto the I2C-
bus without any additional external interfacing, they allow a
prototype system to be modified or upgraded simply by
‘clipping’ or ‘unclipping’ ICs to or from the bus.

Some of the IC, mainly DSP and microcontrollers don’t
have incorporated an I2C driver, and can’t take advantage of
the features of the I2C bus during the communication with the
other ICs. There is a two way to organize this communication.
The first is to write a software driver, but this will take a lot of
processor’s resources. The second is to use some of the
interfaces of the processor and adapt it to I2C standard.

II. I2C BACKGROUND
The I2C bus consists of two wires, serial data (SDA) and

serial clock (SCL), which carry information between the
devices connected to the bus. The number of devices
connected to the same bus is limited only by a maximum bus
capacitance of 400 pF. Both the SDA and SCL lines are
bidirectional lines, connected to a positive supply voltage via
a pull-up resistor. When the bus is free, both lines are High.
The output stages of devices connected to the bus must have
an open-drain or open-collector in order to perform the wired-
AND function.

Each device on the bus has a unique address and can
operate as either a transmitter or receiver. In addition, devices
can also be configured as Masters or Slaves. The I2C protocol
defines an arbitration procedure that insures that if more than
one Master simultaneously tries to control the bus, only one is
allowed to do so and the message is not corrupted. The
arbitration and clock synchronization procedures defined in
the I2C specification are supported by the I2C Controller.

Data transfers on the I2C bus are initiated with a START
condition and are terminated with a STOP condition. Normal
data on the SDA line must be stable during the High period of
the clock. The High or Low state of the data line can only
change when SCL is Low. The START condition is a unique
case and is defined by a High-to-Low transition on the SDA
line while SCL is High. Likewise, the STOP condition is a
unique case and is defined by a Low-to-High transition on the
SDA line while SCL is High. The definitions of data, START,
and STOP insure that the START and STOP conditions will
never be confused as data.

Each data packet on the I2C bus consists of eight bits of
data followed by an acknowledge bit so one complete data
byte transfer requires nine clock pulses. Data is transferred
with the most significant bit first (MSB). The transmitter
releases the SDA line during the acknowledge bit and the
receiver of the data transfer must drive the SDA line low
during the acknowledge bit to acknowledge receipt of the
data. If a Slave-receiver does not drive the SDA line Low
during the acknowledge bit, this indicates that the Slave-
receiver was unable to accept the data and the Master can then
generate a STOP condition to abort the transfer. If the Master-
receiver does not generate an acknowledge, this indicates to
the Slave-transmitter that this byte was the last byte of the
transfer.

Standard communication on the bus between a Master and
a Slave is composed of four parts:

START, Slave address, data transfer, and STOP. The I2C
protocol defines a data transfer format for both 7-bit and 10-
bit addressing. The implementation of the I2C controller in

Authors are with the Department of Microelectronics, Technical
University of Sofia, FETT, Sofia, 1797, Bulgaria
E-mail: ava@ecad.vmei.acad.bg; mihotron@mail.bg

415

the CPLD supports the seven-bit address format. After the
START condition, a Slave address is sent. This address is
seven bits long followed by an eighth-bit which is the
read/write bit. A "1" indicates a request for data (read) and a
"0" indicates a data transmission (write). Only the Slave with
the calling address that matches the address transmitted by the
Master responds by sending back an acknowledge bit by
pulling the SDA line Low on the ninth clock.

III. I2C CONTROLLER

The CoolRunner CPLD implementation of the I2C
Controller supports the following features:

• Microcontroller interface

• Master or Slave operation

• Multi-master operation

• Software selectable acknowledge bit

• Arbitration lost interrupt with automatic mode switching
from Master to Slave

• Calling address identification interrupt with automatic
mode switching from Master to Slave

• START and STOP signal generation/detection

• Repeated START signal generation

• Acknowledge bit generation/detection

• Bus busy detection

• 100 KHz operation
A. Signal Description

The I/O signals of the I2C controller are described in
Table 1. Pin numbers have not been assigned to this design,
this can be done to meet the system requirements of the
designer.
 B. Block Diagram

The block diagram of the I2C Controller, shown in Figure
1 was broken into two major blocks, the µC interface and the
I2C interface.

C. Microcontroller interface logic
In the first cycle, the µC places the address on the address

bus, sets the read/write line to the correct state, and asserts
address strobe (AS) and data strobe (DS). Address strobe
indicates that the address present on the address bus is valid.
If this is a write cycle, the µC also places the data on the data
bus and DS indicates that valid data is present on the data bus.
If this is a read cycle, the µC 3-states the data bus and DS
indicates that the I2C Controller can place data on the data
bus. Upon the assertion of AS, the I2C Controller transitions
to the ADDR state to decode the address and determine if it is
the device being addressed. The enables for the internal
registers are set in this state. If the I2C Controller is being
addressed and DS is asserted, the I2C controller progresses to
the DATA_TRS state. If this is a read cycle, the requested
data is placed on the bus and if this is a write cycle, the data
from the data bus is latched in the addressed register.

Name Direction Description

SDA Bidirectional I2C Serial Data.

SCL Bidirectional I2C Serial Clock.

ADDR_BUS[23:0] Input Address Bus.

DATA_BUS[7:0] Bidirectional Data Bus.

Fig. 1 Block Diagram of I2C controller

416

AS Input Address Strobe. Active Low µC handshake signal indicating that the address
present on the address bus is valid.

DS Input Data Strobe. Active Low handshake signal indicating that the data present on
the data bus is valid or that the microcontroller is no longer driving the data bus
and the I2C Controller can place data on the data bus.

R_W Input Read/Write. "1" indicates a read, "0" indicates a write.

DTACK Output Data Transfer Acknowledge. Active Low µC handshake signal indicating that
the I2C Controller has placed valid data on the data bus for a read cycle or that
the I2C Controller has received the data on the bus for a write cycle.

IRQ Output Interrupt Request. Active Low.

MCF Output Data Transferring Bit. While one byte of data is
being transferred, this bit is cleared. It is set by the
falling edge of the ninth clock of a byte transfer. This bit is used to signal the
completion of a byte transfer to the µC.

CLK Input Clock. This clock is input from the system.

Tab.1 Signal Description of I2C controller

Upon the assertion of DTACK, the µC either removes data
from the bus if this is a write cycle, or latches the data present
on the bus if this is a read cycle. The read/write line is set to
read and AS and DS are negated to indicate that the data
transfer is complete. The negation of AS and DS causes the
I2C Controller to negate DTACK and transition to the IDLE
state.
D. I2C interface logic

The I2C bus interface logic consists of several different
processes. Control bits from the µC interface registers
determine the behavior of these processes.
D.1. Arbitration

Arbitration of the I2C bus is lost in the following
circumstances:

• The SDA signal is sampled as a "0" when the Master
outputs a "1" during an address or data transmit cycle

• The SDA signal is sampled as a "0" when the Master
outputs a "1" during the acknowledge bit of a data receive
cycle

• A start cycle is attempted when the bus is busy
• A repeated start cycle is requested in Slave mode
• A STOP condition is detected when the Master did not

request it
If the I2C Controller is in Master mode, the outgoing SDA

signal is compared with the incoming SDA signal to
determine if control of the bus has been lost. The SDA signal
is checked only when SCL is High during all cycles of the
data transfer except for acknowledge cycles to insure that
START and STOP conditions are not generated at the wrong
time. If the outgoing SDA signal and the incoming SDA
signals differ, then arbitration is lost. At this point, the I2C
Controller switches to Slave mode. The I2C design will not
generate a START condition while the bus is busy. If
arbitration is lost during a byte transfer, SCL continues to be
generated until the byte transfer is complete.
D.2. START/STOP detection
This process monitors the SDA and SCL signals on the I2C
bus for START and STOP conditions. When a START

condition is detected, the Bus Busy bit is set. This bit stays set
until a STOP condition is detected. The signals,
DETECT_START and DETECT_STOP are generated by this
process for use by other processes in the logic. Note that this
logic detects the START and STOP conditions even when the
I2C Controller is the generator of these conditions
D.3. Generation of SCL, SDA, START and STOP Conditions

This process generates the SCL and SDA signals output
on the I2C bus when in Master mode. The clock frequency of
the SCL signal is ~100 KHz and is determined by dividing
down the input clock. The number of input clock cycles
required for generation of a 100 KHz SCL signal is set by the
constant CNT_100 KHZ and is currently calculated for a
system clock of 4 MHz. This constant can easily be modified
by a designer based on the clock available in the target
system. Likewise, the constants START_HOLD and
DATA_HOLD contain the number of system clock cycles
required to meet the I2C requirements on hold time for the
SDA lines after generating a START condition and after
outputting data. Note that SCL and SDA are held at the
default levels if the bus is busy. This state machine generates
the controls for the system clock counter.

In the IDLE state, SCL and SDA are 3-stated, allowing
any Master to control the bus. Once a request has entered to
generate a start condition, the I2C Controller is in Master
mode, and the bus is not busy, the state machine transitions to
the START state. The START state holds SCL High, but
drives SDA Low to generate a START condition. The system
clock counter is started and the state machine stays in this
state until the required hold time is met. At this point, the next
state is SCL_LOW_EDGE. The SCL_LOW_EDGE state
simply creates a falling edge on SCL and resets the system
clock counter. On the next clock edge, the state machine
moves to state SCL_LOW. In this state, the SCL line is held
Low and the system clock counter begins counting. If the
REP_START signal is asserted then the SDA signal will be
set High, if the GEN_STOP signal is asserted, SDA will be
set Low. When the SCL low time has been reached, the state

417

machine will transition to the IDLE state if arbitration has
been lost and the byte transfer is complete to insure that SCL
continues until the end of the transfer. Otherwise the next
state is the SCL_HI_EDGE state. The SCL_HI_EDGE state
generates a rising edge on SCL by setting SCL to "1". Note,
however, that the state machine will not transition to the
SCL_HI state until the sampled SCL signal is also High to
obey the clock synchronization protocol of the I2C
specification. Clock synchronization is performed using the
wired-AND connection of the SCL line. The SCL line will be
held Low by the device with the longest low period. Devices
with shorter low periods enter a high wait state until all
devices have released the SCL line and it goes High.
Therefore the SCL_HI_EDGE state operates as the high wait
state as the SCL clock is synchronized. The SCL_HI state
then starts the system clock counter to count the high time for
the SCL signal. If a repeated START or a STOP condition has
been requested, the state machine will transition to the
appropriate state after half of the SCL high time so that the
SDA line can transition as required. If neither of these
conditions has been requested, then the state machine
transitions to the SCL_LOW_EDGE state when the SCL high
time has been achieved. The STOP_WAIT state is used to
insure that the hold time requirement after a STOP condition
is met.
E. I2C interface main state machine

This state machine is the same for both Slave and Master
modes. In each state, the mode is checked to determine the
proper output values and next state conditions. This allows for
immediate switching from Master to Slave mode if arbitration
is lost or if the I2C Controller is addressed as a Slave. This
state machine utilizes and controls a counter that counts the
I2C bits that have been received. This count is stored in the
signal BIT_CNT. This state machine also controls two shift
registers, one that stores the I2C header that has been received
and another that stores the I2C data that has been received or
is to be transmitted. When a START signal has been detected,
the state machine transitions from the IDLE state to the
HEADER state. The START signal detection circuit monitors
the incoming SDA and SCL lines to detect the START
condition. The START condition can be generated by the I2C
controller or another Master—either source will transition the
state machine to the HEADER state. The HEADER state is
the state where the I2C header is transmitted on the I2C bus
from the MBDR register if in Master mode. In this state, the
incoming I2C data is captured in the I2C Header shift register.
In Master mode, the I2C Header shift register will contain the
data that was just transmitted by this design. When all eight
bits of the I2C header have been shifted in, the state machine
transitions to the ACK_HEADER state. In the
ACK_HEADER state, the I2C design samples the SDA line if
in Master mode to determine whether the addressed I2C Slave

acknowledged the header. If the addressed Slave does not
acknowledge the header, the state machine will transition to
the STOP state, which signals the SCL/START/STOP
generator to generate a STOP. If the addressed Slave has
acknowledged the address, then the LSB of the I2C header is
used to determine if this is a transmit or receive operation and
the state machine transitions to the appropriate state to either
receive data, or to transmit data. The I2C Header shift register
is constantly compared with the I2C address set in the
MYADR register. If these values match in the
ACK_HEADER state, the I2C Controller has been addressed
as a Slave and the mode immediately switches to Slave mode.
The RCV_DATA state shifts the incoming I2C data into the
I2C shift register for transfer to the µC. When the whole data
byte has been received, the state machine transitions to the
ACK_DATA state. Note that in Master mode, the indication
that the Slave has transmitted the required number of data
bytes is to not acknowledge the last byte of data. The µC must
negate the TXAK bit to prohibit the ACK of the last data
byte. The state machine exits this pair of states when a STOP
condition has been detected, otherwise, the transition between
these two states continues. In Master mode, the µC requests a
STOP condition by negating the MSTA bit. The
XMIT_DATA state shifts the data from the I2C data register
to the SDA line. When the entire byte has been output, the
state machine transitions to the WAIT_ACK state. If an
acknowledge is received, the state machine goes back to the
XMIT_DATA to transmit the next byte of data. This pattern
continues until either a STOP condition is detected, or an
acknowledge is not received for a data byte. Note that the data
transfer states of this state machine assume that the µC can
keep up with the rate at which data is received or transmitted.
If interrupts are enabled, an interrupt is generated at the
completion of each byte transfer. The MCF bit is set as well
providing the same indication. Data is transferred to/from the
I2C data register to/from the µC data register during the
acknowledge cycle of the data transfer.. The STOP state
signals the SCL/START/STOP generator to generate a STOP
condition if the I2C design is in Master mode. The next state
is always the IDLE state and the I2C activity is completed.

IV. CONCLUSION
This I2C controller contains a micocontroller interface and

provides I2C Master/Slave capability. It is intended to be used
with microcontroller, microprocessor or DSP,and permit
communicaton bitween them and integration cirquits to be
done with standard READ/WRITE operation.

REFERENCES

[1] Philips Semiconductor:” I2C Specification”
[2] www.xilinx.com

	Main menu
	Back to CT session

