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I2C Bus Controler Implementation  
Dimitar Dimitrov, Anna Andonova, Nikita Dimitrov, Petar Gugutkov 

Abstract - In this paper is discussed VHDL implementation of an 
I2C controller in a CPLD. The I2C bus is a popular serial, two 
wire interface used in many systems because of its low overhead. 
The two-wire interface minimizes interconnections between IC 
so they have fewer pins, and the number of traces required on 
printed circuit boards is reduced. Capable of 100KHz in normal 
mode and 400KHz in fast mode, each device connected to the bus 
is software addressable by a unique address with a simple 
Master/Slave protocol. 

I. INTRODUCTION 
The Inter Integration Circuit (I2C) bus is a popular serial, 

two-wire interface used in many systems because of its low 
overhead.  All I2C-bus compatible devices incorporate an on-
chip interface, which allows them to communicate directly 
with each other via the I2C-bus. This design concept solves 
the many interfacing problems encountered when designing 
digital control circuits. 

Here are some of the features of the I2C-bus: Only two 
bus lines are required: a serial data line (SDA) and a serial 
clock line (SCL); Each device connected to the bus is 
software addressable by a unique address and simple master/ 
slave relationships exist at all times; Masters can operate as 
master-transmitters or as master-receivers; It’s a true multi-
master bus including collision detection and arbitration to 
prevent data corruption if two or more masters simultaneously 
initiate data transfer; Serial, 8-bit oriented, bidirectional data 
transfers can be made at up to 100 kbit/s in the standard mode 
or up to 400 kbit/s in the fast mode ;On-chip filtering rejects 
spikes on the bus data line to preserve data integrity ; The 
number of ICs that can be connected to the same bus is 
limited only by a maximum bus capacitance of 400 pF.  

I2C-bus compatible ICs allow a system design to rapidly 
progress directly from a functional block diagram to a 
prototype. Moreover, since they ‘clip’ directly onto the I2C-
bus without any additional external interfacing, they allow a 
prototype system to be modified or upgraded simply by 
‘clipping’ or ‘unclipping’ ICs to or from the bus.  

Some of the IC, mainly DSP and microcontrollers don’t 
have incorporated an I2C driver, and can’t take advantage of 
the features of the I2C bus during the communication with the 
other ICs. There is a two way to organize this communication. 
The first is to write a software driver, but this will take a lot of 
processor’s resources. The second is to use some of the 
interfaces of the processor and adapt it to I2C standard.  

II. I2C BACKGROUND 
The I2C bus consists of two wires, serial data (SDA) and 

serial clock (SCL), which carry information between the 
devices connected to the bus. The number of devices 
connected to the same bus is limited only by a maximum bus 
capacitance of 400 pF. Both the SDA and SCL lines are 
bidirectional lines, connected to a positive supply voltage via 
a pull-up resistor. When the bus is free, both lines are High. 
The output stages of devices connected to the bus must have 
an open-drain or open-collector in order to perform the wired-
AND function. 

Each device on the bus has a unique address and can 
operate as either a transmitter or receiver. In addition, devices 
can also be configured as Masters or Slaves. The I2C protocol 
defines an arbitration procedure that insures that if more than 
one Master simultaneously tries to control the bus, only one is 
allowed to do so and the message is not corrupted. The 
arbitration and clock synchronization procedures defined in 
the I2C specification are supported by the I2C Controller. 

Data transfers on the I2C bus are initiated with a START 
condition and are terminated with a STOP condition. Normal 
data on the SDA line must be stable during the High period of 
the clock. The High or Low state of the data line can only 
change when SCL is Low. The START condition is a unique 
case and is defined by a High-to-Low transition on the SDA 
line while SCL is High. Likewise, the STOP condition is a 
unique case and is defined by a Low-to-High transition on the 
SDA line while SCL is High. The definitions of data, START, 
and STOP insure that the START and STOP conditions will 
never be confused as data. 

Each data packet on the I2C bus consists of eight bits of 
data followed by an acknowledge bit so one complete data 
byte transfer requires nine clock pulses. Data is transferred 
with the most significant bit first (MSB). The transmitter 
releases the SDA line during the acknowledge bit and the 
receiver of the data transfer must drive the SDA line low 
during the acknowledge bit to acknowledge receipt of the 
data. If a Slave-receiver does not drive the SDA line Low 
during the acknowledge bit, this indicates that the Slave-
receiver was unable to accept the data and the Master can then 
generate a STOP condition to abort the transfer. If the Master-
receiver does not generate an acknowledge, this indicates to 
the Slave-transmitter that this byte was the last byte of the 
transfer. 

Standard communication on the bus between a Master and 
a Slave is composed of four parts: 

START, Slave address, data transfer, and STOP. The I2C 
protocol defines a data transfer format for both 7-bit and 10-
bit addressing. The implementation of the I2C controller in 
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the CPLD supports the seven-bit address format. After the 
START condition, a Slave address is sent. This address is 
seven bits long followed by an eighth-bit which is the 
read/write bit. A "1" indicates a request for data (read) and a 
"0" indicates a data transmission (write). Only the Slave with 
the calling address that matches the address transmitted by the 
Master responds by sending back an acknowledge bit by 
pulling the SDA line Low on the ninth clock. 

III. I2C CONTROLLER 

The CoolRunner CPLD implementation of the I2C 
Controller supports the following features: 

• Microcontroller interface 

• Master or Slave operation 

• Multi-master operation 

• Software selectable acknowledge bit 

• Arbitration lost interrupt with automatic mode switching 
from Master to Slave 

• Calling address identification interrupt with automatic 
mode switching from Master to Slave 

• START and STOP signal generation/detection 

• Repeated START signal generation 

• Acknowledge bit generation/detection 

• Bus busy detection 

• 100 KHz operation 
A. Signal Description  

The I/O signals of the I2C controller are described in 
Table 1. Pin numbers have not been assigned to this design, 
this can be done to meet the system requirements of the 
designer. 
 B. Block Diagram 

The block diagram of the I2C Controller, shown in Figure 
1 was broken into two major blocks, the µC interface and the 
I2C interface.  

C. Microcontroller interface logic 
In the first cycle, the µC places the address on the address 

bus, sets the read/write line to the correct state, and asserts 
address strobe (AS) and data strobe (DS). Address strobe 
indicates that the address present on the address bus is valid. 
If this is a write cycle, the µC also places the data on the data 
bus and DS indicates that valid data is present on the data bus. 
If this is a read cycle, the µC 3-states the data bus and DS 
indicates that the I2C Controller can place data on the data 
bus. Upon the assertion of AS, the I2C Controller transitions 
to the ADDR state to decode the address and determine if it is 
the device being addressed. The enables for the internal 
registers are set in this state. If the I2C Controller is being 
addressed and DS is asserted, the I2C controller progresses to 
the DATA_TRS state. If this is a read cycle, the requested 
data is placed on the bus and if this is a write cycle, the data 
from the data bus is latched in the addressed register. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name Direction  Description 
 

SDA Bidirectional I2C Serial Data. 

SCL Bidirectional I2C Serial Clock. 

ADDR_BUS[23:0] Input  Address Bus. 

DATA_BUS[7:0] Bidirectional Data Bus. 

Fig. 1 Block Diagram of I2C controller 
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AS Input Address Strobe. Active Low µC handshake signal indicating that the address 
present on the address bus is valid. 

DS Input Data Strobe. Active Low handshake signal indicating that the data present on 
the data bus is valid or that the microcontroller is no longer driving the data bus 
and the I2C Controller can place data on the data bus. 

R_W Input Read/Write. "1" indicates a read, "0" indicates a write. 

DTACK Output Data Transfer Acknowledge. Active Low µC handshake signal indicating that 
the I2C Controller has placed valid data on the data bus for a read cycle or that 
the I2C Controller has received the data on the bus for a write cycle. 

IRQ Output Interrupt Request. Active Low. 

MCF Output Data Transferring Bit. While one byte of data is 
being transferred, this bit is cleared. It is set by the 
falling edge of the ninth clock of a byte transfer. This bit is used to signal the 
completion of a byte transfer to the µC. 

CLK Input Clock. This clock is input from the system. 
 

Tab.1 Signal Description of I2C controller 
 
Upon the assertion of DTACK, the µC either removes data 
from the bus if this is a write cycle, or latches the data present 
on the bus if this is a read cycle. The read/write line is set to 
read and AS and DS are negated to indicate that the data 
transfer is complete. The negation of AS and DS causes the 
I2C Controller to negate DTACK and transition to the IDLE 
state. 
D. I2C interface logic 

The I2C bus interface logic consists of several different 
processes. Control bits from the µC interface registers 
determine the behavior of these processes. 
D.1. Arbitration 

Arbitration of the I2C bus is lost in the following 
circumstances: 

• The SDA signal is sampled as a "0" when the Master 
outputs a "1" during an address or data transmit cycle 

• The SDA signal is sampled as a "0" when the Master 
outputs a "1" during the acknowledge bit of a data receive 
cycle 

• A start cycle is attempted when the bus is busy 
• A repeated start cycle is requested in Slave mode 
• A STOP condition is detected when the Master did not 

request it 
If the I2C Controller is in Master mode, the outgoing SDA 

signal is compared with the incoming SDA signal to 
determine if control of the bus has been lost. The SDA signal 
is checked only when SCL is High during all cycles of the 
data transfer except for acknowledge cycles to insure that 
START and STOP conditions are not generated at the wrong 
time. If the outgoing SDA signal and the incoming SDA 
signals differ, then arbitration is lost. At this point, the I2C 
Controller switches to Slave mode. The I2C design will not 
generate a START condition while the bus is busy. If 
arbitration is lost during a byte transfer, SCL continues to be 
generated until the byte transfer is complete. 
D.2. START/STOP detection 
This process monitors the SDA and SCL signals on the I2C 
bus for START and STOP conditions. When a START 

condition is detected, the Bus Busy bit is set. This bit stays set 
until a STOP condition is detected. The signals, 
DETECT_START and DETECT_STOP are generated by this 
process for use by other processes in the logic. Note that this 
logic detects the START and STOP conditions even when the 
I2C Controller is the generator of these conditions 
D.3. Generation of SCL, SDA, START and STOP Conditions 

This process generates the SCL and SDA signals output 
on the I2C bus when in Master mode. The clock frequency of 
the SCL signal is ~100 KHz and is determined by dividing 
down the input clock. The number of input clock cycles 
required for generation of a 100 KHz SCL signal is set by the 
constant CNT_100 KHZ and is currently calculated for a 
system clock of 4 MHz. This constant can easily be modified 
by a designer based on the clock available in the target 
system. Likewise, the constants START_HOLD and 
DATA_HOLD contain the number of system clock cycles 
required to meet the I2C requirements on hold time for the 
SDA lines after generating a START condition and after 
outputting data.  Note that SCL and SDA are held at the 
default levels if the bus is busy. This state machine generates 
the controls for the system clock counter. 

In the IDLE state, SCL and SDA are 3-stated, allowing 
any Master to control the bus. Once a request has entered to 
generate a start condition, the I2C Controller is in Master 
mode, and the bus is not busy, the state machine transitions to 
the START state. The START state holds SCL High, but 
drives SDA Low to generate a START condition. The system 
clock counter is started and the state machine stays in this 
state until the required hold time is met. At this point, the next 
state is SCL_LOW_EDGE. The SCL_LOW_EDGE state 
simply creates a falling edge on SCL and resets the system 
clock counter. On the next clock edge, the state machine 
moves to state SCL_LOW. In this state, the SCL line is held 
Low and the system clock counter begins counting. If the 
REP_START signal is asserted then the SDA signal will be 
set High, if the GEN_STOP signal is asserted, SDA will be 
set Low. When the SCL low time has been reached, the state 
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machine will transition to the IDLE state if arbitration has 
been lost and the byte transfer is complete to insure that SCL 
continues until the end of the transfer. Otherwise the next 
state is the SCL_HI_EDGE state. The SCL_HI_EDGE state 
generates a rising edge on SCL by setting SCL to "1". Note, 
however, that the state machine will not transition to the 
SCL_HI state until the sampled SCL signal is also High to 
obey the clock synchronization protocol of the I2C 
specification. Clock synchronization is performed using the 
wired-AND connection of the SCL line. The SCL line will be 
held Low by the device with the longest low period. Devices 
with shorter low periods enter a high wait state until all 
devices have released the SCL line and it goes High. 
Therefore the SCL_HI_EDGE state operates as the high wait 
state as the SCL clock is synchronized. The SCL_HI state 
then starts the system clock counter to count the high time for 
the SCL signal. If a repeated START or a STOP condition has 
been requested, the state machine will transition to the 
appropriate state after half of the SCL high time so that the 
SDA line can transition as required. If neither of these 
conditions has been requested, then the state machine 
transitions to the SCL_LOW_EDGE state when the SCL high 
time has been achieved. The STOP_WAIT state is used to 
insure that the hold time requirement after a STOP condition 
is met. 
E. I2C interface main state machine 

This state machine is the same for both Slave and Master 
modes. In each state, the mode is checked to determine the 
proper output values and next state conditions. This allows for 
immediate switching from Master to Slave mode if arbitration 
is lost or if the I2C Controller is addressed as a Slave. This 
state machine utilizes and controls a counter that counts the 
I2C bits that have been received. This count is stored in the 
signal BIT_CNT. This state machine also controls two shift 
registers, one that stores the I2C header that has been received 
and another that stores the I2C data that has been received or 
is to be transmitted. When a START signal has been detected, 
the state machine transitions from the IDLE state to the 
HEADER state. The START signal detection circuit monitors 
the incoming SDA and SCL lines to detect the START 
condition. The START condition can be generated by the I2C 
controller or another Master—either source will transition the 
state machine to the HEADER state. The HEADER state is 
the state where the I2C header is transmitted on the I2C bus 
from the MBDR register if in Master mode. In this state, the 
incoming I2C data is captured in the I2C Header shift register. 
In Master mode, the I2C Header shift register will contain the 
data that was just transmitted by this design. When all eight 
bits of the I2C header have been shifted in, the state machine 
transitions to the ACK_HEADER state. In the 
ACK_HEADER state, the I2C design samples the SDA line if 
in Master mode to determine whether the addressed I2C Slave 

acknowledged the header. If the addressed Slave does not 
acknowledge the header, the state machine will transition to 
the STOP state, which signals the SCL/START/STOP 
generator to generate a STOP. If the addressed Slave has 
acknowledged the address, then the LSB of the I2C header is 
used to determine if this is a transmit or receive operation and 
the state machine transitions to the appropriate state to either 
receive data, or to transmit data. The I2C Header shift register 
is constantly compared with the I2C address set in the 
MYADR register. If these values match in the 
ACK_HEADER state, the I2C Controller has been addressed 
as a Slave and the mode immediately switches to Slave mode. 
The RCV_DATA state shifts the incoming I2C data into the 
I2C shift register for transfer to the µC. When the whole data 
byte has been received, the state machine transitions to the 
ACK_DATA state. Note that in Master mode, the indication 
that the Slave has transmitted the required number of data 
bytes is to not acknowledge the last byte of data. The µC must 
negate the TXAK bit to prohibit the ACK of the last data 
byte. The state machine exits this pair of states when a STOP 
condition has been detected, otherwise, the transition between 
these two states continues. In Master mode, the µC requests a 
STOP condition by negating the MSTA bit. The 
XMIT_DATA state shifts the data from the I2C data register 
to the SDA line. When the entire byte has been output, the 
state machine transitions to the WAIT_ACK state. If an 
acknowledge is received, the state machine goes back to the 
XMIT_DATA to transmit the next byte of data. This pattern 
continues until either a STOP condition is detected, or an 
acknowledge is not received for a data byte. Note that the data 
transfer states of this state machine assume that the µC can 
keep up with the rate at which data is received or transmitted. 
If interrupts are enabled, an interrupt is generated at the 
completion of each byte transfer. The MCF bit is set as well 
providing the same indication. Data is transferred to/from the 
I2C data register to/from the µC data register during the 
acknowledge cycle of the data transfer.. The STOP state 
signals the SCL/START/STOP generator to generate a STOP 
condition if the I2C design is in Master mode. The next state 
is always the IDLE state and the I2C activity is completed. 

IV. CONCLUSION 
This I2C controller contains a micocontroller interface and 

provides I2C Master/Slave capability. It is intended to be used 
with microcontroller, microprocessor or DSP,and permit 
communicaton bitween them and integration cirquits to be 
done with standard READ/WRITE operation. 
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