
 

418 

Testing of Agreement Procedure by Fault Injection 
Taschko Nikolov1 

Abstract – This paper presents a fault injection method to test 
the correctness of agreement procedure. Unlike other injectors 
the faults are derived automatically from an attributed Petri net 
model. Paths in the reachability graph of the model comprise 
path classes characterized by time and data attributes, which are 
processed symbolically. Experimental results demonstrate the 
feasibility of the method. 
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I. INTRODUCTION 

In many cases two or more nodes have to agree a common 
action to environment (such as agreement for the new routing 
table in telecommunication network, control system with 
safety critical application etc.). For instance the problem of 
the Byzantine fault (agreement protocol between three nodes) 
is well known from far back.  

Hence there is no problem to design such agreement 
procedure. The difficulty comes when the testing procedure is 
necessary. Additional complexity is contributed by the 
requirement for fault tolerant agreement procedure. This 
means that occured fault in part of the system doesn’t cause 
wrong reaction. The system has to mask the faults (if possible) 
and when the masking redundancy is exhausted а halt of the 
system is required. The reason for wrong reaction can be a 
fault which is unconsidered by the system design, i.e. the 
system has a design error.  

The proposed in the paper test algorythm provides a tool for 
checking of all possible combinations between design errors 
and system faults. The system is divided in some sub nodes 
and one or more of them are considered as faulty. Followed 
by system test intended for detection of a wrong reaction. For 
this purpose the system is modeled with attributed Petri net.  

It generates all correct and erroneous messages (called 
injected messages). An operational fault is characterized by 
the set of messages injected during a single test run. After 
these messages have been sent to the faultfree rest of the 
distributed system under test, it is checked whether they are 
covered by the fault processing technique or lead to illegal 
output possibly causing a wrong reaction. Injection is carried 
out completely independent of the underlying local 
operational fault in the sender, because the reaction of the 
faultfree system part is to be tested, not the internal behavior 
of a faulty sub node. 

In contrast to other injectors used for quantification of 
dependability measures [1, 6] the injectors for testing need not 
be realistic. 
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II. ATTRIBUTED PETRI NET 

The attributed Petri net model comprises places with 
capacity 1 and transitions: firing of transition changes the 
marking, i.e. the presence of tokens in places, to express a 
sequence of states. Only the decision of the agreement 
procedure on a single result is modeled. However, the model 
covers all possible combinations of data, time and fault 
scenarios. The model is finite with respect to the token game. 
It is infinite because of the following time and data attributes: 

Time attributes model message delays and timeouts 
Time variables tx are associated with places to express that 

the token is “frozen” there for duration tx and released 
afterwards. No concrete value to tx or a probability 
distribution is assigned. Instead it is specified an interval [ax, 
bx] with constants ax and bx to mark the lower and upper 
bounds for tx, i.e. the range where tx can vary non-
deterministically. Fig. 1 shows the time variables tM and tT for 
message M and timeout T, respectively. 

Data attributes model message contains local variables. 
Data items are represented by variables, not by concrete 
values – see dA, dM and dB in fig. 1. After firing functions may 
be applied to data expressions and assigned to data variables, 
see dM = f(dA), dB = g(dM, dB) and dB = 0 in fig. 1. Predicates 
and functions are treated symbolically as well. 
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Fig. 1. Part of an attributed Petri net model 

Nodes as a whole form operational fault region and, on 
fault occurrence, exhibit wrong behavior. Unlike most other 
Petri net fault models [4], this model does not add fault 
elements like “message loss transitions”. Instead, when 
assuming node X as faulty it will be simply cut the respective 
part from the model, including the Petri net edges leading into 
and out of the faulty node. The places representing messages 
sent by the faulty node stand for injected messages. Each such 
place IM is marked initially and attributed with a time 
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variable tIM ∈ [0, ∞) and condition-free data variables to 
cover any wrong behavior. 

Cutting a substantial part from the attributed Petri net does 
not only provide a general model of arbitrary operational 
faults. It also makes the analysis more efficient. 

The modeler has to define correctness by use of correctness 
predicate over sequences of marking. 

The formal framework for specification of the correctness 
predicate is defined as follow: 

 Let P = {p1, …, pP} be the set of P places in 
the attributed  Petri net. 

 Let m be a marking, m ⊆ P, where pi ∈ m means 
that pi carries a token in m. 

 Let rM = {m1, …, mrM} be the set of rM 
reachable markings, with mi ⊆ P 

 Let Q = {q1, …, qQ} be the set of Q reachable 
sequences of markings, which are subsequently 
reached according to the attributed Petri net. The 
initial marking is the same for all paths, e.g. q1(1)= 
= q2 (1) = … = qQ(1).  

It is obvious that the marking is only reachable if it is in any 
of the paths. Consequently, rM is the union: 

)(
1,1
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irjQi
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≤≤≤≤

=  (1) 

The marking m can also be expressed by a Boolean vector, 
where element i is true if pi ∈ m. The correspondence between 
the place set and the vector representation is expressed by the 
function: v: rM → {true, false}P 

For the example from fig. 1 is obtained: 
P = {p1, p2, p3}, p1 = M, p2 = R, p3 = T, 
Q = {q1, q2, q3} with path lengths r1 = r2 = r3 = 3, see fig. 2. 
First path: 
q1(1) = {M}, q1(2) = {M, R, T} , q1(3) = {T}. 
Second path: 
q2(1) = {M}, q2(2) = {M, R, T} , q2(3) = {M}. 
Third path: 
q3(1) = {M}, q3(2) = {M, R, T} , q3(3) = {M}. 
The second and the third path only deviate in their 

attributes (not visible here). Reachable markings are: rM = 
{{M}, {M, R, T}, {T}}. The marking m = {T} ∈ rM, for 
example, can also be represented by the Boolean vector 
v({T}) = (false, false, true), because p3 = T assigning index 
3 to T. 

 
M 

M, R, T

M M T 
 

 
Fig. 2. Reachable paths for the model from fig. 1 

III. SYSTEM MODEL 

A proposal of agreement procedure between two 
operational nodes is given (fig. 3). To ease the description and 
later fault injection the system is separated in sub nodes – 
Input (I), Node A (A), Node B (B), Comparator (C) and 
Switch (Output Node). From one side Node A and the Switch 
are physically one device (computer) and from another side 
Node B and the Comparator are combined.  

The Input node has to transmit information for diverse 
actions to the Node A and the Comparator. Node A calculates 
the necessary action of the system, makes an absolute test of 
the data and tries to send them through the Switch to the 
environment. The comparator controls the Switch position and 
only the closed Switch is able to send the information.  

Node B receives the calculated data from Node A and tries, 
according to the environmental status and the proposal from 
Node A, to “guess” what has been “desired” by the Node 
Input, e.g. to solve the inverse function (f-1) of Node A. 

The Comparator compares the result from Node B and the 
Input and if the comparison is true the Switch will be closed. 
Otherwise the Switch remains open. 
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Fig. 3. Agreement procedure between two nodes 
 

The Petri net model of the system is shown on fig. 4.  
As it was mentioned above, a subject of the model is only 

the agreement procedure. The Input node can send either а 
sense or nonsense command. The sense command has to 
cause an active reaction; while the nonsense command has to 
cause halt. The simultaneous marking of sense or nonsense 
places means a nondesired (i.e. dangerous) reaction. Because 
of the Node A has an absolute test there for the token can 
mark only one of the output places (A_reaction or A_halt). 
The aim of Node B is only to calculate the inverse function. 
The comparator has to perform the following tasks: 

 To check if nonsense command from the Input 
Node is coming and if it is true the expected 
command from the Node B should be halt_B; 

 The condition to send an acknowledgement to the 
Switch is the absence of halt_B and a positive 
result from the comparison of sense_C and halt_B. 
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Fig. 6. Petri net model of Agreement procedure between two nodes 

 
The marking of the output place „Y“ of the Switch 

confirms that the output reaction (action or halt) is correct. 
Presence of tokens in all output places (A, H, Y) can be 
regarded as a nondesired (dangerous) reaction.   

IV. MODEL-BASED EVALUATION 

Existing methods of fault/error injection into models use 
simulation models [5]. We developed a fundamentally 
different approach by staying in the model world of attributed 
Petri nets using respective analysis methods. Instead of 
simulating particular executions under injection, we check 
directly whether the fault time and data satisfy any of the 
„dangerous paths“ caused by a design fault. Fig. 5 shows this 
approach.  

In the left column the process of generating the faults to be 
injected is shown from top to bottom: Firstly, reachability 
analysis with symbolic treatment of time and data attributes 
generates the path set Q. Then, one of the selection criteria 
(see next section) can be applied to form the path set Qsel, 
where sel stands for random, close-to-danger, coverage or 
none. Finally solutions to the time and data conditions in the 
paths Qsel are determined to form the fault set faults(Qsel). It 
consists of k faults, each for exactly one of the k test runs. 

In the right column a similar process is shown for an attrib-
uted Petri net model containing a design error – supposed to 
be revealed by fault injection. Reachability analysis leads to a 
path set Q’. From this set the paths, which violate the applica-
tion-depend correctness specification are selected. 

The set of such paths is called Q’danger where Q’danger ⊆ Q. If 
dangerous paths do not exist, e.g. Q’danger = ∅, the evaluation 
stops here. Otherwise from Q’danger the time and data con-
ditions are extracted - conditions (Q’danger). These time 
inequalities and data predicates in first order predicate logic 

express the conditions under which a dangerous state is 
reached. These formulae characterize the injected messages 
(points in time and data of injected messages). 

Finally we have to determine the effect of injecting of a 
fault from faults(Qsel) into thesystem containing a design 
error. More precisely: We have to decide whether the injec-
tions lead to a dangerous state, as expressed by conditions 
(Q’danger). If not, the design error remains undetected. 
Otherwise the injection is considered as successful. 
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Fig. 5. Model-based evaluation of fault injection for testing 
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We denote the absolute number of successful injections by 
ksuccess and the relative portion ksuccess/k by Κ. 

Basically, a single successful injection would be sufficient 
to reveal a design error. However, the coverage of the checks 
in the real system is never perfect. 

IV. FAULT SELECTION CRITERIA 

Random selection: k out of n paths are selected according 
to the discrete uniform distribution. This criterion is only used 
for comparison 

Close-to-dager: Paths are the more preferred as test cases 
the closer they come to danger. The danger conditions have to 
be defined in advance. 

Coverage Selection: According to the known principles of 
white-box software testing [2, 3] one can try to execute all 
parts of the given test object. However, this strategy must be 
modified for Petri nets due to their non-sequential nature. For 
this reason an activity of a place in the Petri net is defined: 
Low activity, called activity 0 means that the marking of a 
place remains unchanged throughout a path. Activity 1 means 
a single change and all more frequent changes fall into the 
category activity 2. Paths with different place activities have 
to be selected. 

 

V. EXPERIMENTS AND RESULTS 

Into the system have been inserted design errors and have 
been injected operational faults. According the method 
presented on fig. 5 the portion Κ of successful injections is 
obtained. 

We generated four different artificial design errors for the 
modeled system: 

a)  Incomplete input checks in Node A, accepting wrong 
input data 

b)  Different design errors in the input checks of Node A 
and the Comparator 

c)  Same design error in the input checks of Node A and the 
Comparator 

d)  Wrong implementation of f-1 generates an arbitrary 
output if f(i) = „halt“ 

Single and double operational faults have been injected into 
the following sets of components: {I}, {A}, {B}, {C}, {I, A}, 
{I, B}, {I, C}, {B, C}. The path numbers of the model areas 
follows: 

 |Q| =7 in the absence of both design faults and 
operational faults, 

 |Q| ≤ 1116 in the presence of operational fault only, 
(none of them violates correctness: |Q’danger| = 0 

 |Q| ≤ 4250 and |Q’danger| ≤ 2946 in the presence of 
both design errors and operational faults. 

Fig. 6 shows the portion Κ = ksuccess/k of successful injec-
tions depending on the selected portion γ = k/n of paths for the 
three selection criteria. Note: γ = 100% means that selection 
criteria are not applied. 
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Fig. 6. Portion Κ of successful injections for the three 
selection criteria 

VI. CONCLUSION 

Specialized mechanisms are applied to attack the main 
problem of testing: to select appropriate faults among the 
members of the extremely huge set off all possible faults. 

According to this principle the main design decisions are: 
 Definition of the attributed Petri net model 
 The main countermeasure against state explosion is the 

symbolic treatment of time and data attributes by linear 
inequalities and first-order predicate logic, respectively. 

 Reduction in the number of faults is achieved by 
special selection criteria: Close-to-danger is directly 
based on the given definition for undesired behavior. 
Coverage uses the novel notion of place activity in the 
attributed Petri nets. 

Experiments showed that the coverage criteria should be 
preferred. Since its definition is application-transparent, it can 
be applied to the test of several algorithms. 
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