

418

Testing of Agreement Procedure by Fault Injection
Taschko Nikolov1

Abstract – This paper presents a fault injection method to test
the correctness of agreement procedure. Unlike other injectors
the faults are derived automatically from an attributed Petri net
model. Paths in the reachability graph of the model comprise
path classes characterized by time and data attributes, which are
processed symbolically. Experimental results demonstrate the
feasibility of the method.

Keywords – modeling, testing, fault injection, attributed Petri

net

I. INTRODUCTION

In many cases two or more nodes have to agree a common
action to environment (such as agreement for the new routing
table in telecommunication network, control system with
safety critical application etc.). For instance the problem of
the Byzantine fault (agreement protocol between three nodes)
is well known from far back.

Hence there is no problem to design such agreement
procedure. The difficulty comes when the testing procedure is
necessary. Additional complexity is contributed by the
requirement for fault tolerant agreement procedure. This
means that occured fault in part of the system doesn’t cause
wrong reaction. The system has to mask the faults (if possible)
and when the masking redundancy is exhausted а halt of the
system is required. The reason for wrong reaction can be a
fault which is unconsidered by the system design, i.e. the
system has a design error.

The proposed in the paper test algorythm provides a tool for
checking of all possible combinations between design errors
and system faults. The system is divided in some sub nodes
and one or more of them are considered as faulty. Followed
by system test intended for detection of a wrong reaction. For
this purpose the system is modeled with attributed Petri net.

It generates all correct and erroneous messages (called
injected messages). An operational fault is characterized by
the set of messages injected during a single test run. After
these messages have been sent to the faultfree rest of the
distributed system under test, it is checked whether they are
covered by the fault processing technique or lead to illegal
output possibly causing a wrong reaction. Injection is carried
out completely independent of the underlying local
operational fault in the sender, because the reaction of the
faultfree system part is to be tested, not the internal behavior
of a faulty sub node.

In contrast to other injectors used for quantification of
dependability measures [1, 6] the injectors for testing need not
be realistic.

1 Taschko Nikolov is with Telecom Department at the Technical

University of Sofia, “Kliment Ohridsky Blvd 8, 1756 Sofia, Bulgaria,
e-mail: tan@vmei.acad.bg

II. ATTRIBUTED PETRI NET

The attributed Petri net model comprises places with
capacity 1 and transitions: firing of transition changes the
marking, i.e. the presence of tokens in places, to express a
sequence of states. Only the decision of the agreement
procedure on a single result is modeled. However, the model
covers all possible combinations of data, time and fault
scenarios. The model is finite with respect to the token game.
It is infinite because of the following time and data attributes:

Time attributes model message delays and timeouts
Time variables tx are associated with places to express that

the token is “frozen” there for duration tx and released
afterwards. No concrete value to tx or a probability
distribution is assigned. Instead it is specified an interval [ax,
bx] with constants ax and bx to mark the lower and upper
bounds for tx, i.e. the range where tx can vary non-
deterministically. Fig. 1 shows the time variables tM and tT for
message M and timeout T, respectively.

Data attributes model message contains local variables.
Data items are represented by variables, not by concrete
values – see dA, dM and dB in fig. 1. After firing functions may
be applied to data expressions and assigned to data variables,
see dM = f(dA), dB = g(dM, dB) and dB = 0 in fig. 1. Predicates
and functions are treated symbolically as well.

variable dA
initial dA = iA

•••

tM ∈ [0, 5]
dM

message

node A

A1
fires at t1
dM = f (dA)

M R T

•••

•••
••• •••

node B

variable dB
initial dB = iB

B1 fires at t2

tT ∈ [8, 8]
B2 B3

dB = g(dM, dB) dB = 0

Fig. 1. Part of an attributed Petri net model

Nodes as a whole form operational fault region and, on
fault occurrence, exhibit wrong behavior. Unlike most other
Petri net fault models [4], this model does not add fault
elements like “message loss transitions”. Instead, when
assuming node X as faulty it will be simply cut the respective
part from the model, including the Petri net edges leading into
and out of the faulty node. The places representing messages
sent by the faulty node stand for injected messages. Each such
place IM is marked initially and attributed with a time

419

variable tIM ∈ [0, ∞) and condition-free data variables to
cover any wrong behavior.

Cutting a substantial part from the attributed Petri net does
not only provide a general model of arbitrary operational
faults. It also makes the analysis more efficient.

The modeler has to define correctness by use of correctness
predicate over sequences of marking.

The formal framework for specification of the correctness
predicate is defined as follow:

 Let P = {p1, …, pP} be the set of P places in
the attributed Petri net.

 Let m be a marking, m ⊆ P, where pi ∈ m means
that pi carries a token in m.

 Let rM = {m1, …, mrM} be the set of rM
reachable markings, with mi ⊆ P

 Let Q = {q1, …, qQ} be the set of Q reachable
sequences of markings, which are subsequently
reached according to the attributed Petri net. The
initial marking is the same for all paths, e.g. q1(1)=
= q2 (1) = … = qQ(1).

It is obvious that the marking is only reachable if it is in any
of the paths. Consequently, rM is the union:

)(
1,1

jqrM
irjQi

iU
≤≤≤≤

= (1)

The marking m can also be expressed by a Boolean vector,
where element i is true if pi ∈ m. The correspondence between
the place set and the vector representation is expressed by the
function: v: rM → {true, false}P

For the example from fig. 1 is obtained:
P = {p1, p2, p3}, p1 = M, p2 = R, p3 = T,
Q = {q1, q2, q3} with path lengths r1 = r2 = r3 = 3, see fig. 2.
First path:
q1(1) = {M}, q1(2) = {M, R, T} , q1(3) = {T}.
Second path:
q2(1) = {M}, q2(2) = {M, R, T} , q2(3) = {M}.
Third path:
q3(1) = {M}, q3(2) = {M, R, T} , q3(3) = {M}.
The second and the third path only deviate in their

attributes (not visible here). Reachable markings are: rM =
{{M}, {M, R, T}, {T}}. The marking m = {T} ∈ rM, for
example, can also be represented by the Boolean vector
v({T}) = (false, false, true), because p3 = T assigning index
3 to T.

M

M, R, T

M M T

Fig. 2. Reachable paths for the model from fig. 1

III. SYSTEM MODEL

A proposal of agreement procedure between two
operational nodes is given (fig. 3). To ease the description and
later fault injection the system is separated in sub nodes –
Input (I), Node A (A), Node B (B), Comparator (C) and
Switch (Output Node). From one side Node A and the Switch
are physically one device (computer) and from another side
Node B and the Comparator are combined.

The Input node has to transmit information for diverse
actions to the Node A and the Comparator. Node A calculates
the necessary action of the system, makes an absolute test of
the data and tries to send them through the Switch to the
environment. The comparator controls the Switch position and
only the closed Switch is able to send the information.

Node B receives the calculated data from Node A and tries,
according to the environmental status and the proposal from
Node A, to “guess” what has been “desired” by the Node
Input, e.g. to solve the inverse function (f-1) of Node A.

The Comparator compares the result from Node B and the
Input and if the comparison is true the Switch will be closed.
Otherwise the Switch remains open.

Input Comparator

Node B

environment

status Actually
action

acknowledgement

Node A Switch

desired
operation

desired operation

status

Fig. 3. Agreement procedure between two nodes

The Petri net model of the system is shown on fig. 4.
As it was mentioned above, a subject of the model is only

the agreement procedure. The Input node can send either а
sense or nonsense command. The sense command has to
cause an active reaction; while the nonsense command has to
cause halt. The simultaneous marking of sense or nonsense
places means a nondesired (i.e. dangerous) reaction. Because
of the Node A has an absolute test there for the token can
mark only one of the output places (A_reaction or A_halt).
The aim of Node B is only to calculate the inverse function.
The comparator has to perform the following tasks:

 To check if nonsense command from the Input
Node is coming and if it is true the expected
command from the Node B should be halt_B;

 The condition to send an acknowledgement to the
Switch is the absence of halt_B and a positive
result from the comparison of sense_C and halt_B.

420

Node A

Input Comparator

 Switch

Node B

A-TEST

nonsense_A sense_A

 A_reaction

 A_halt

reaction_B halt_B

 B_action

B_halt

yes

without no

A

yes

AT_A

 start

H Y

nonsense_C

sense_C

Fig. 6. Petri net model of Agreement procedure between two nodes

The marking of the output place „Y“ of the Switch

confirms that the output reaction (action or halt) is correct.
Presence of tokens in all output places (A, H, Y) can be
regarded as a nondesired (dangerous) reaction.

IV. MODEL-BASED EVALUATION

Existing methods of fault/error injection into models use
simulation models [5]. We developed a fundamentally
different approach by staying in the model world of attributed
Petri nets using respective analysis methods. Instead of
simulating particular executions under injection, we check
directly whether the fault time and data satisfy any of the
„dangerous paths“ caused by a design fault. Fig. 5 shows this
approach.

In the left column the process of generating the faults to be
injected is shown from top to bottom: Firstly, reachability
analysis with symbolic treatment of time and data attributes
generates the path set Q. Then, one of the selection criteria
(see next section) can be applied to form the path set Qsel,
where sel stands for random, close-to-danger, coverage or
none. Finally solutions to the time and data conditions in the
paths Qsel are determined to form the fault set faults(Qsel). It
consists of k faults, each for exactly one of the k test runs.

In the right column a similar process is shown for an attrib-
uted Petri net model containing a design error – supposed to
be revealed by fault injection. Reachability analysis leads to a
path set Q’. From this set the paths, which violate the applica-
tion-depend correctness specification are selected.

The set of such paths is called Q’danger where Q’danger ⊆ Q. If
dangerous paths do not exist, e.g. Q’danger = ∅, the evaluation
stops here. Otherwise from Q’danger the time and data con-
ditions are extracted - conditions (Q’danger). These time
inequalities and data predicates in first order predicate logic

express the conditions under which a dangerous state is
reached. These formulae characterize the injected messages
(points in time and data of injected messages).

Finally we have to determine the effect of injecting of a
fault from faults(Qsel) into thesystem containing a design
error. More precisely: We have to decide whether the injec-
tions lead to a dangerous state, as expressed by conditions
(Q’danger). If not, the design error remains undetected.
Otherwise the injection is considered as successful.

 attr. Petri net model of

the designed system

number Ksuccess
portion Κ

of successful injections

Q
set of n paths, the full

reachability graph

Q sel
k paths selected from
the reachability graph

specification of the
correctness, dangerous

function δ

conditions (Q’danger)
dangerous behaviour to
be reveleated by the test

Q’danger
 correctness-violating
path from reach. graph

errors (Q sel)
time&data values of k
errors to be injected

Q’
set of n’ paths, the full

reachability graph

attr. Petri net model
of the designed

system

attr. Petri net model of
the system with design

error

reachability
analisys

selection
criterion

determine
solutions

reachability
analisys

selection
correctness-
violating paths

extract time and
data conditions

check whether the
injected errors satisfy

the conditions

Fig. 5. Model-based evaluation of fault injection for testing

421

We denote the absolute number of successful injections by
ksuccess and the relative portion ksuccess/k by Κ.

Basically, a single successful injection would be sufficient
to reveal a design error. However, the coverage of the checks
in the real system is never perfect.

IV. FAULT SELECTION CRITERIA

Random selection: k out of n paths are selected according
to the discrete uniform distribution. This criterion is only used
for comparison

Close-to-dager: Paths are the more preferred as test cases
the closer they come to danger. The danger conditions have to
be defined in advance.

Coverage Selection: According to the known principles of
white-box software testing [2, 3] one can try to execute all
parts of the given test object. However, this strategy must be
modified for Petri nets due to their non-sequential nature. For
this reason an activity of a place in the Petri net is defined:
Low activity, called activity 0 means that the marking of a
place remains unchanged throughout a path. Activity 1 means
a single change and all more frequent changes fall into the
category activity 2. Paths with different place activities have
to be selected.

V. EXPERIMENTS AND RESULTS

Into the system have been inserted design errors and have
been injected operational faults. According the method
presented on fig. 5 the portion Κ of successful injections is
obtained.

We generated four different artificial design errors for the
modeled system:

a) Incomplete input checks in Node A, accepting wrong
input data

b) Different design errors in the input checks of Node A
and the Comparator

c) Same design error in the input checks of Node A and the
Comparator

d) Wrong implementation of f-1 generates an arbitrary
output if f(i) = „halt“

Single and double operational faults have been injected into
the following sets of components: {I}, {A}, {B}, {C}, {I, A},
{I, B}, {I, C}, {B, C}. The path numbers of the model areas
follows:

 |Q| =7 in the absence of both design faults and
operational faults,

 |Q| ≤ 1116 in the presence of operational fault only,
(none of them violates correctness: |Q’danger| = 0

 |Q| ≤ 4250 and |Q’danger| ≤ 2946 in the presence of
both design errors and operational faults.

Fig. 6 shows the portion Κ = ksuccess/k of successful injec-
tions depending on the selected portion γ = k/n of paths for the
three selection criteria. Note: γ = 100% means that selection
criteria are not applied.

0%

20%

40%

60%

80%

100%

0,10% 1,00% 10,00% 100,00

γ

Κ

random

close-to-danger

coverage

Fig. 6. Portion Κ of successful injections for the three
selection criteria

VI. CONCLUSION

Specialized mechanisms are applied to attack the main
problem of testing: to select appropriate faults among the
members of the extremely huge set off all possible faults.

According to this principle the main design decisions are:
 Definition of the attributed Petri net model
 The main countermeasure against state explosion is the

symbolic treatment of time and data attributes by linear
inequalities and first-order predicate logic, respectively.

 Reduction in the number of faults is achieved by
special selection criteria: Close-to-danger is directly
based on the given definition for undesired behavior.
Coverage uses the novel notion of place activity in the
attributed Petri nets.

Experiments showed that the coverage criteria should be
preferred. Since its definition is application-transparent, it can
be applied to the test of several algorithms.

REFERENCES

[1] U. Aldenhoff: Theorem prover to decide data conditions
in a Petri net model of fault-tolerant distributed systems;
Dipl. Thesis, (in German) University of Dortmund, 1996

[2] Y. Chen, K.Echtle, W. Görke: Testing Fault-Tolerant
Protocols by Heuristic Fault Injection; Informatik-
Fachberichte 283, Springer, 1991, pp. 407 - 418

[3] K. Echtle, Y. Chen: Evaluation of Deterministic Fault
Injection for Fault-Tolerant Protocol testing, FTCS-21,
Dig. of P., 1991, pp. 418 – 425

[4] C. Girault: Proof of Protocols on the Case of Failures;
Parallel Processing systems, an Advanced Course,
Cambridge U. Press, 1982, pp. 121 – 139

[5] E. Jenn, J. Arlat, M. Rimen, J. Ohlson, J. Karlsson: Fault
Injection into VHDL Models: The MEFISTO Tool;
FTCS-24, Digest of Papers, 1994, pp. 66 – 75

[6] A. Steininger, H. Schweizer: A Model for the Analysis
of the Fault Injection Process; FTCS-25, Digest of
Papers, 1995, pp. 186 – 195.

	Main menu
	Back to CT session

