

183

System for Interactive Vector
Image Processing

Slava Milanova Yordanova 1, Mariana Ts. Stoeva 2

1 Slava Milanova Yordanova Technical University Varna 9000
“Computational Technique” Department,
 Republic of Bulgaria Email:sl@windmail.net
2 Mariana Ts. Stoeva Technical University, Varna, 9000
 “Computational Technique” Department,
Republic of Bulgaria E-mail: mstoeva@windmail.net

Abstract: It is proposed a system for vector image processing –
called by the authors “Open Modeler”, based of the plug-ins and
libraries of the Windows and the object modeler of Microsoft.
Keywords: Graphic, Open Modeler, vectors, matrices, images

I. INTRODUCTION

The standard IGES (International Graphics Exchange
Specification) is created in 1979. There are put in the concepts
as method of end elements, presentation of areas by
interpolation and approximation, splains and others [1, 2, 3].
The company, which ground the standards in this field, is
American company Autodesk. Its products as AutoCAD, 3D
Studio, 3D Studio MAX are standing as a base for comparing
the any other system for vector graphiics. Important
significance assumed the visualization libraries Open GL of
SGI and DirectX of Microsoft [4].

In this paper a new system is offered for processing of
vector graphics - called from authors Open Modeller, which is
based on superstructures and libraries of Windows and Object
Model of Microsoft.
The purpose of proposed work out is using the contemporary
methods for building of engineer vector graphic systems with
option for hardware acceleration of visualization and similar
interface for computer graphic subsystem access.

II. OPEN MODELLER SYSTEM DESIGN

A. Main concepts and definitions.

The Open Modeller program system is build on modular
principle. For this purpose is used the Component Object
Model of Microsoft.

It is realized on base of interfaces, contains sets of functions,
which every one component defined on your creation. For
transparency the fundamental concepts will defined connected
to the function of Component Object Model [2, 3, 4].
• Component - a program module, which realizes one or

more interfaces and eventually defines one or more
interfaces. When a component uses the other, it is called
client, and the used - server, because it disposes
determinate services.

• Interface - a set of functions, which a client can use for
calling a component. This function set is declared by
mean, so that can be readed by every one, independent of

the language and platform on which it works. The
interfaces of one or more components are described and
saved in so called type libraries, as the operation system
give up methods for its registration and readig.

• GUID (Global Unique Identifier) - Each component is
identified with a 128-bit number, called GUID (Global
Unique Identifier). This number is calculated by a
equation when the component is created, the specification
of the computer, the date and hour of creation and other
factors are taken to insure the uniqueness of these
identifiers. The uniqueness is very important, because
certain component could be used from many machines
simultaneously and its identifiers must not be duplicated
with one of other component. There are public databases
that keep all registered till now identifiers. They offer
secure unique identifiers for minimal cost.

• IID (Interface IDentifier) – When a component defines an
interface it defines and GUID. It is possible certain
component to define more than one interface so it is
necessary to exists a method for their distinguishing. By
this GUID each client is shown which component to use.
These identifiers are called interface identifiers.

• CLSID (CLaSs IDentifiers) – A certain interface could be
realized from different components. To be differentiated,
to each of them is given a GUID that is called class
identifier. It defines the component that realizes the given
interface.

• ProgID (Programatic IDentifier) – They are a sequence of
symbols defined by the programmer that give a
descriptive name of the component. They are developed
to be remembered easily and to be used easily by the
corresponding number identifiers. They does not make an
uniqueness.

To be identified a certain component is necessary to be
known its class identifier(CLSID) and its interface identifier
(IID), through which the access to it will be made. Most of the
systems have internal support of the access methods. It is
necessary to be defined the component that will be used either
through the user interface, as in Visual Basic, or through a
predefined constants as in Visual C++.

The modularity of the system Open Modeler is granted by
the breaking it to two parts. The first and most important part
is the core of the system. It is an executable file that controls
all the rest modules in the system. Its basic purposes are two:

184

to load and initialize the rest of the modules and to give them
specific services that they use. These services consists in itself
common user interface. This consists of common realization
of the menus and floating bars with tools. [1, 2].

B. Control and execution of commands defined preliminary
by the modules.

For the realization is necessary preliminary to be defined
certain definitions that will be used in the development of the
system.

• Interface element – This is each part of the user
interface, as the menu, option from the menu, floating
bar, etc. There are two kinds of elements like this –
local and global.

• Local interface element – These are interface elements
that are visible only when a certain view of a module is
active.

• Global interface element – These are interface elements
that are visible all the time. They are used for
commands that must be available trough all the
working time of the program.

• Commands – Identifier couple Program identifier –
Number that describes a certain element from the user
interface or action connected with the user interface.

• Event – Notification message that is sent to all registered
for it modules.

• User View – A window for visualization.
The second part of the system is complex and consists of all

modules that are registered and loaded. The modules are
components organized in dynamic libraries (DLL) that are
realizing the interface IPlugin and could be two types [1, 2]:

• Independent modules – These are independent
components that are free from the others modules in
loading and initialization.

• Dependant modules – These are components for which
initialization are necessary certain preconditions. It
means that other modules must be loaded before them
to work the system properly. The dependant modules
check every time if the modules they need are loaded.

On Fig.1 is shown a block scheme of the modules in the
offered system.
Application

It is created first when the program starts and its function is
to organize the rest of the components. In the initialization the
separate modules receive index, so they can realize theirs own
functions, add commands and elements from the user interface
and register events. [1, 5]

Fig.1 Connections between the modules.

CommandOrganizer

This component is used for organization of the commands in
the system. Its purposes are to ensure uniqueness to the
commands and to give resources to the modules to register
and unregister commands, also to attach itself to definite
command for service actions.
EventDispatcher

The basic functions of this component are registration and
dispatch of events. These events are synchronous. It means
that if an event arrives, it will be sent subsequently to all
modules registered for it.
PluginManager

This is a component that is called immediately after creation
of the Application. Its purpose is to organize all modules
registered in the system, to load, to initialize and to unload
them. Once activated it shows on the screen no modal dialog
that is used for displaying a list of all registered modules in
the system and their status – loaded or unloaded.
ViewManager

This component consists and organizes all entered from the
modules user views. Trough it every module can append and
remove own view that can be unique not only by functionality
but by user interface.
MenuManager

It is used for organization of the menus in the system. It is
accessible directly from the component UIManager and
organizes in the same way either the global or the local menus
and options.
FloatBarManager

This component organizes the floating panels with
instruments their appending and removal. It is used for
manipulation of either the local or the global panels and the
manipulation of the both kinds is the same. Each panel is
identified with Identification Couple. (i.e. Program
Identificator - Number)
View

The component defines and controls the user view - for
internal use only. In it there is to the local UIManager also
and the view itself given from the module.
FloatBar

185

This component is a floating panel. It is used for appending
instruments in given panel.
FloatBarTool

It is a component that represents definite instrument from a
given panel with instruments.
IPlugin

It is the basic interface that has to realize each module if this
module wants to be loaded into the system. Each method of
this interface has to be realized from the module.

The visualization of the objects in the system is realized

with the help of the visual library Open Cascade 3.0 of the
company Matra Datavision Inc. The current version of this
library is fully free and is available its source. It has been
developed since 1994 from the same company for the
purposes of the engineer graphic and consists of function for
visualization and geometrical modeling. It is written in C++
and is multi platform. Its structure is object oriented and
consists of hierarchy of classes for visualization of plane or
spatial objects. For visualization is used OpenGL. This
permits to the user of the system to see real time a
photorealistic model of his work without the help of other
expensive products. In this moment the version 4.0 is in
progress that will have better support of hard modeling and
also a support of multiple file formats as DXF and DWG.

The main module of the system Open Modeler is realized as
independent module that is loaded in the beginning. Its
function consists of:
1. Visualization of all objects of the drawing in the space.
2. Drawing the basic 2D and 3D primitives:

• Line
• Subline
• Rectangular
• Cube spline
• Regular parallelepiped
• Etc.

3. Functionality for finding of hotspots on the drawing for
improvement of the drawing precision:

• Definition of the cross points between the objects.
• Definition of end points of the objects.
• Definition of point placed on exact distance from the

beginning of the frame of reference.

OMD (Open Modeler Drawing) – own file format in binary
code.

DXF (Drawing eXchange Format) – text file format from
Autodesk.

BREP (Boundary REPresentation) – Internal file format of
Open Cascade.

RLE (Run-Length Encoded) – Internal file format of Open
Cascade.

III. CONCLUSIONS AND RESULTS.

The program system Open Modeller has intuitive interface.
Each function is available from the menu and from the
floating panels with instruments. In it is used exclusively only
the mouse and the function of the it’s buttons are clearly
separated – the left button of the mouse is used for selection,
drawing, modifying and editing of the objects; the right button
is used for rejecting of an operation and for finishing of some
operations. During the drawing, modifying and manipulating
the view it is not possible to be made selection of objects.

For edition of definite object it has to be draw totally and the
status has to be in regime selection. The function for
modification includes moving, rotation and zooming of the
object. For each of them it is necessary first to select the
objects that have to be modified.

The program system Open Modeller is complete system for
vector graphic with capabilities that have all the new
programs in this field. The basic composition of functions for
drawing, editing and modification of primitives and more
complex objects is realized openly. The user interface is easy
for understanding and use. The primary advantages of the
system are its open architecture, the easy and simple interface,
the support of number of file formats and the visualization
engine that permits definite object to be viewed in almost
realistic form without using expensive software for rendering.
The possibilities for extension of the system are infinite. In the
common case the system is not limited and can be used in the
architecture, constructions and even in the game industry. It is
necessary to be written the corresponding modules.

LITERATURE:

[1.] Ibrahim Zeid, CAD/CAM Theory and Practice
[2.] Dan Box, CAM Essentials
[3.] Brent Rector and Chris Sells, ATL Internals
[4.] Stivan Harisan, Computer Graphic – Program Approach

	Back to DIP session
	Main menu

