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The Performance of the OFDM System in Presence of 
Frequency and Timing Offset 

Veljko Stankovic, Nenad Milosevic, Zoran Peric, Zorica Nikolic 

Abstract -
    
The influence of the number of subcarriers on the 

error probability in presence of frequency and timing offset in 
the system with orthogonal frequency division multiplexing 
(OFDM) is investigated. In paper we use Gaussian 
approximation of the inter-carrier interference (ICI). The results 
show that, in the presence of frequency offset, the number of 
subcarriers does not affect the error probability, and the 
frequency offset significantly increases the error probability (in 
considered case for two orders of magnitude).  The presence of 
timing offset also causes the error probability increase. In this 
case the number of subcarriers has influence on the value of 
error probability. At higher timing offsets the error probability 
depends only on the subcarriers number. 

Keywords - Orthogonal Frequency Division Multiplexing, 
frequency offset, timing offset. 

I. INTRODUCTION 

The effect of the timing offset on the error probability in 
OFDM system was investigated in paper [1]. The effect of the 
frequency offset was investigated in paper [2]. In this paper 
the effect of the frequency and timing offset as well as the 
number of subcarriers on the error probability of the system 
with orthogonal frequency division multiplexing (OFDM) will 
be investigated. 

In OFDMA system variable data rate can be achieved using 
different number of subcarriers. By increasing the number of 
subcarriers, the spacing between the samples is reduced and 
sensitivity to the timing errors is increased. In this paper we 
will focus only on the inter-carrier interference (ICI) 
introduced by the frequency offset. The power of ICI 
introduced by the frequency offset also depends on the 
number of the subcarriers. If we assume that the OFDM 
symbol is cyclically extended, and that the delay spread of the 
channel does not exceed the guard time, then the timing offset 
introduces only a phase rotation that linearly changes with the 
order of subcarrier. 

It will be shown that as the number of subcarriers N, 
increase, when the subcarrier spacing is constant, the error 
probability changes more rapidly in presence of the timing 
offset than in the case when only frequency offset is present. 
This paper is organized as follows. In Section II we will 
derive the equations for symbol error probability in case when 
the receiver makes a timing error τ in the sampling process 
and frequency downconversion error ∆f. Numerical results are 
presented in Section III, while conclusions are presented in 
Section IV. 
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II. ERROR PROBABILITY 

Input binary data stream is portitioned into blocks of 2N 
bits. Each block is used to modulate N orthogonal subcarriers. 
Each subcarrier is QAM modulated. We assume that at the 
reception we use digital phase locked loop. Frequency offset 

 f∆  is normalized to the subcerrier spacing 0  f , 0   ff∆=ε . 
Timing offset is modeled as zero mean random Gaussian 
variable. Standard deviation of timing offset is normalized to 
the interval 0 0 1 fT =  OFDM symbol duration is equal to 

cpTTT += 0 , where Tcp denotes the duration of the cyclic 
prefix. 

If we assume that the modulation is performed using inverse 
discrete Fourier transform (IDFT), complex envelope of the 
OFDM transmission symbol is given by the equation: 
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for 
0TtTcp ≤≤− , where N is the number of subcarriers, 

nnn jbaX +=  are complex QAM symbols and an and bn are 
two information bits in the I - and Q - channel, respectively. 
We will assume that { }1 ,1, −∈nn ba . Complex envelope of the 
signal at the input of the receiver is equal to: 
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where n(t) is the complex envelope of white additive Gaussian 
noise (AWGN) at the input of the receiver, with zero mean 
and variance 2

nσ . Received signal is sampled at the rate 0   fN . 
We assume that the receiver makes a timing error τ in the 
sampling process. If OFDM symbol is cyclicly extended, then 
the sample of the receved signal is equal to: 
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where nk represents AWGN noise sample. We use this 
samples to compute the discrete Fourier transform (DFT): 

 ∑
−

=

−
=

1

0

2
  1~ N

k

mk
N

j

km er
N

X
π

 (3) 



524 

By substituting (2) in (3) we get the estimation of the  
complex data symbol transmitted on the mth subcarrier: 
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where the first term represents user signal, and the second 
term represents the inter-carrier interference. The third term, 
nm , is equal to: 
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This term represents AWGN at the output of DFT block, with 
zero mean and variance 2

nσ . The second term, representing 
ICI, will be modelled as a Gaussian process with zero mean 
and variance: 
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Variance of ICI is conditioned on relative frequency offset. 
Equation (4) then can be written as: 
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where gm denotes Gaussian random variable with zero mean 
and variance conditioned on relative frequency offset ε: 
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This random variable represents the overall noise that includes 
thermal noise and intecarrier interference. 

 If mnm bjaX ~~~ +=  then from (6) we can write for ma~  and 
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where gmI and gmQ represent quadrature components of the 
overall noise. 

The probability of correct decision on the mth subcarrier is 
conditioned on the value of timing offset and signals in I and 
Q channels of the QAM signal. This probability is given by 
the equation (10): 
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where SNR represents the signal-to-overall noise ratio per 
information bit at the input of the decision device: 
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Error probability on the mth subcarrier conditioned on the 
timing offset is equal to: 
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Because of the ICI, the value of the error probability depends 
on the index of the subcarrier that we observe. Because of 
this, all of the results for the error probability that are 
presented here, are obtained by averaging the probability 
given by the eqation (12) over the index m: 
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The error probability in presence of the frequency offset and 
Gaussian distributed timing offset is calculated according to 
the equation: 
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where p(τ) denotes the pdf function of the timing offset that is 
modelled as a Gaussian random variable with zero mean and 
variance στ . 

III.   NUMERICAL RESULTS 

Error probability as a function of relative frequency offset ε, 
normalized standard deviation of timing offset and ratio 

2
0 21log10 nb NE σ   =  is shown in Fig. 1 and Fig 2. Eb denotes 

the user signal energy per one bit. These results were obtained 
using equation (14). It is assumed that the subcarrier spacing 
is constant 0  f . 
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Fig. 1. Error probability as a function of relative frequency offset ε, 
and 

0NEb
 ratio. N = 32, and 00 =Tτσ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Error probability as a function of normalized timing offset 

0Tτσ  and relative frequency offset ε. Ratio 
0NEb

 is equal 8 dB. 

Figure 1. represents error probability as a function of the 
relative frequency offset and signal-to-noise ratio per one bit 
at the input of the decision device, 0NEb .  

The error probability curves were computed using N = 32, 
64, 96 and 128. With the increase of the number of the 
subcarriers N, when the subcarrier spacing is constant, the 
error probability does not change significantly. Because the 
curves for the various values of N do not differ significantly, 
only the values of the error probability computed for 32=N  
are plotted in Fig. 1. 

Figure 2. represents error probability per one QAM symbol, 
obtained using equation (14), versus the normalized timing 
offset and the relative frequency offset. Signal-to-noise ratio is 
equal dBNEb  80 = . 

From Fig. 2. it can be seen that in the case when the timing 
offset is not present (στ / T0 = 0), the number of the subcarriers 
does not affect the value of the error probability. The value of 
the error probability, in that case, depends only on the value of 
the frequency offset that degrades the system performance by 
two orders of magnitude. 

The increase of the timing offset value results in the 
increase of the subcarriers number influence on the error 
probability. 

From the figure, one can see that there is the value of timing 
offset ( 0025.00 =Tτσ ), above which the value of the error 
probability depends only on the subcarriers number.  

IV.  CONCLUSION 

It was shown that, in the presence of frequency offset, the 
number of subcarriers does not affect the error probability, 
and the frequency offset significantly increases the error 
probability (in considered case for two orders of magnitude).  

The presence of timing offset also causes the error 
probability increase. In this case the number of subcarriers has 
influence on the value of error probability. At higher timing 
offsets the error probability depends only on the subcarriers 
number. 
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