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Load-Flow in Sequence Domain
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Abstract — In this paper a new linear method for asymmetrical
load-flow solution is presented. With 6x6 matrix model of the
power system elements, the node-admittance matrix is formed
by “overlapping” procedure. Applying the new scaling concept
and enhanced bus classification, also synthesizing the low volt-
age nodes of step-up transfor mersin the high voltage nodes, the
node-admittance matrix dimensions are reduced.
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I. Introduction

Always, the three-phase electrical power systems states are
asymmetrical, which deviate more or less from the symmet-
rical states. The reasons for asymmetrical states are presence
of long unbalanced (untransposed) lines and asymmetrical or
single-phase loads (as induction furnaces and traction motors
etc.). These states cause: negative-sequence currents at gen-
erator terminals rise heating in their rotors; malfunctions of
protective relays; zero-sequence currents increase greatly the
effect of inductive coupling between parallel transmission
lines; higher power system loss etc. Therefore, for more pre-
cise analysis of three-phase power system states, the asym-
metrical load-flow (ALF) analysis are required. Also, ALF
calculations are required to study the effects of various phase
arrangements of transmission lines, single pole switching,
etc.

Because of mutual inductive and capacitive couplings be-
tween phases, 6x6 node-admittance matrices in phase do-
main, which describe the generators, transformers and all
lines, are not sparse. But, 6x6 node-admittance matrices
which describe the balanced power system elements (prac-
tically all generators, transformers and transposed lines) in
sequence domain are sparse [1] (all mutual couplings be-
tween phases are eliminated). In this domain, only 6 x6 node-
admittance matrices, which describe untransposed lines, are
not sparse. Usually, the solution of ALF problem is per-
formed using methods in phase domain (Newton-Raphson
and fast decoupled procedures) [2]. Taking into account that
6x6 node-admittance matrices which represent power sys-
tem elements are sparse, it is obvious that memory for prob-
lem storage and CPU time for problem solution in the phase
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domain will be much greater against solutions in the se-
guence domain.

First solutions of the ALF problem in sequence domain are
proposed in [3]. In these methods the transformer model in
sequence domain is obtained by transformation of it’s model
in the phase domain. Because of this procedure, the advance-
ments of direct modeling in sequence domain and applica-
tion of 6x6 sparse matrices are lost. Applying the genera-
tor, transformer and transposed line models presented in [1],
a new efficient linear method for ALF analysis in sequence
domain is established. This method is based on the power
system nodal voltage equations.

I1.  Power System Buses Reduction

Let us consider a three-phase (unbalanced) power system in
(asymmetrical) steady state. The system consists of n three-
phase buses, i.e. 3n phase nodes and the zero potential node
R. These buses consist of: N generator internal buses (fic-
titious buses behind the generator synchronous impedances);
N¢ generator external buses (are buses connecting genera-
tors and their step-up transformers); N buses of the high
voltage sides of step-up transformers; N, load buses; Ngyv
buses in which synchronous and static compensators, capac-
itor and reactor units are connected; N transfer buses (all
buses that do not belong to any of previous five groups).

The most widely used linear power system model is that
of the nodal voltage equation. In the phase domain (abc) and
sequence domain (dio), this model says:

abe abc __ yabe

X3n><3ng?)n><1 - l3n><1 ’ (1)
dio dio  __ ydio

X3n><3ng?)n><1 - I3n><1 - (2)

The node-admittance matrix in phase domain Y 4% . = has
more nonzero elements then the matrix Y % . - in the se-
guence domain which is sparse matrix.

The node-admittance matrix would be symmetrical if ideal
transformers with complex turns ratios did not appear in the
power systems equivalent circuits. It is always the case when
the power system is treated in the phase domain, or when it is
treated in the sequence domain, but transformed by the New
Scaling Concept [4].

Applying this concept for normalization, the phase shifts
introduced by the ideal transformers with complex turns ra-
tios in the sequence circuits, are eliminated. Now, each gen-
erator and it’s step-up transformer can be presented in the
sequence domain, separate from the transmission network,
as it is shown on the Fig. 1a).
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Fig. 1. Scaled sequence circuits of synchronous generator and step-up transformer a) and b) synthesized in the high voltage bus g of the

step-up transformer.

The superscript of positive-sequence parameters is d, for
negative-sequence is 7 and for zero-sequence is o; the inter-
nal and external generator buses are signed by int and ext,
respectively.

The scaled sequence impedances of the synchronous gen-
erator are denoted by gg, 2% and 2% 2, represents the
generator grounding impedance; the phase a generator open-
circuit voltage is denoted by w,, and it is equal to the positive-
sequence internal bus voltage e¢,,. The transformer positive-
sequence and grounding impedances are denoted as z ., and
zZnTs respectively.

Because the generator internal bus voltage, as well as the
voltage drops on the generator and transformer impedances
are not of interest simultaneously with values of other power
system quantities, the voltage control and the active power
control are associated with the high voltage transformer bus
g (that is the usual practice). Thus, the circuits presented in
Fig. 1a are simplified as those presented in Fig. 1b, where the
internal and external generator buses are synthesized in the
high voltage bus of the step-up transformer. In this case, pa-
rameters of the positive-sequence are omitted in the Fig. 1b,
but parameters of the negative and zero-sequence circuits are
suppressed in the transmission network. The high voltage bus
denoted by g may be of PxV, 8V or PsQx type [5].

It is obvious that synthesizing procedure enables power
system buses reduction for 2N buses. Now, the power sys-
tem can be treated as a system with » = n — 2N buses or
3r nodes.

I1l. Reduced Node-Admittance Matrix

The node-admittance matrix is formed for a sequence circuits
without ideal transformers with complex turn ratios and for a
power system model with reduced number of nodes 3r. Thus,
it will be symmetrical and can be derived very simply by in-
spection of the power system structure. Applying the power

system elements models given by 6x6 matrices [1] and “over-
lapping” procedure [6], the reduced node-admittance matrix
is forming step by step.

Let us consider “overlapping” of two three-phase power
system elements. The element E is connected between buses
p and j and it’s 6x6 node-admittance matrix is signed as
Y g. The element F is connected between buses j and & and
it’s 6x 6 node-admittance matrix is signed as Y z. The corre-
sponding matrices

Y(pp) Y(Pj) ] [Y(jj) Y(jk) ]
YE: E £ andYF: FA- FM
[ng) Y(E]J) Y%’:J) Yg‘vk)

are consist of four 3x3 sub-matrices. The sub-matrices
Y(EPP), Y(EI‘)J), ng), Y(E]J) and Y;_‘JJ), Y(sz), Y(F{CJ), Ygfk)
are diagonal if the elements E and F are balanced. But if these
elements are untransposed lines, these matrices are with non-
zero elements.

The connection way of these two elements in the power
system is shown on the Fig. 2.

d i o@
[ ] [ ] [ ]

d e ® g
@i: Yy Yr :i@
oe ® O
YH

Fig. 2. Elements E and F connection in the power system.

The resultant node-admittance matrix for this part of the
power system, consist of these two elements, is calculated
as:

Yu=| Y& YYD v @)
0 Y4 Y )
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Thus, continuing by this procedure, adding element by el-
ement, the reduced node-admittance matrix Y 429 . for the

power system of 3r nodes, can be formed very easy.

IV. Linear Model in Sequence Domain

The nodal voltage equation for the power system represented
with reduced number of buses shown on Fig. 1b, is:

dio dio __ ydio
X3’I">(3’I"H3’I"X1 - l37"><1 . (4)

The dimensions of the linear power system model given by
Eqg. (1) are 3n x 3n. In contrast to this model, the dimensions
of the proposed model (Eq. (4)) are reduced to 3r x 3r. The
proposed model is advanced with respect to the model given
by Eq. (2), [3], as follows:

1. The node-admittance matrix is performed for a circuit
without ideal transformers with complex turns ratios
(thus, it is symmetrical and it can be derived very simply
by inspection);

2. The node-admittance matrix dimensions are reduced for
all generator internal and external buses;

3. There is no need to introduce small fictitious zero-
sequence admittances at A-sides of step-up transform-
ers to avoid the singularity of corresponding node-
admittance matrices.

If the three-phase bus, type 8V is a last numbered bus r,
then Eq. (4) represented with sub-matrices, gets the form:

o diordi di di diol Frrdion i
YlioYlgo...Ylg?..Yng..Ylgo Ulf" Ilf"
Y%UY%O...Y%‘?..Ygl;f’...Yg,’,o Ug”o Igw
Ygl{OYglgo...Yj;f’...YggO...Ygﬁo Ugio _ Igio (5)
oY v i el Jufel i
iyl vile vile vie| [uge] i)
In common terms, the sub-matrix with dimensions 3 x 3is:
dd di do
) Zs,t Xs.t Xs,t
Yio=| Y4 vi v | st=12,r
od o1 00
Xst Zst Zst

If the three-phase element, connected in the power sys-
tem between buses s and ¢ is balanced, this sub-matrix is
diagonal. But, if the element is unbalanced this sub-matrix
is with all non-zero elements. The same conclusion can be
established for s = ¢. Namely, if any three-phase element
connected into bus s (or t) is unbalanced, the sub-matrix
Y% (or Y¢i°) is with all non-zero elements. The sequence
circuits voltages of bus s and injected currents in bus s
(5=1,2,...,t,...,r) are given in matrix form, respectively U ¢
and 1%,

Depending of the power system buses type, the following
values are specified:

a) for the slack bus, type 8V, the angle and magnitude of a
voltage in positive-sequence circuit:
d _ rrd _77d d .
Qr - Qr,sp - Ur,spéer,sp’ (6)
b) for the buses type PxV, values of three-phase injected
active powers (sz) and magnitude of the positive-
sequence voltage:

Y _ pa b c_ pX d__g7d .
PX=P4PHPi=P> and Ul=UZ, g€ {PsV};

c) for the bus type PQ, values of three pairs of injected
active and reactive powers:
_ . pb_pb . pc_
py=pr; ; P)=P, Py=P;

p,sp’ p,sp’ p,sp?

Qp =y p5 Qg: Z,SP; Qp=Qp p P E {PQ}.

Because for the slack bus, the complex voltage of the
positive-sequence circuit is known (specified), the corre-
sponding equation should be excluded from the linear equa-
tions system given by matrix Eq. (5). This exclusion is per-
formed by specific transformation of Eq. (5) presented in [7],
without losing the dimensions of the equations system. Af-
ter the transformation procedure, a new corrected system of
linear equations (Eg. (7), with the same unknown values as a
system given by Eqgs. (4) or (5), is established:

Y(dio)kUdio _ I(dio)k. @)

3rx3r ¥ 3rxl — 3rx1

Although, the modules of the complex voltages in the nodes
of the positive-sequence circuit for the Py V' type buses are
specified, in this method they are treated as unknown values.

V. Linear Equations System Solution

The main purpose of the asymmetrical load-flow solution is
to obtain the complex voltages in all power system buses.
With known complex voltages, the injected active and reac-
tive powers into all buses, as well as the powers in all system
elements, can be easy calculated.

The solution of the linear equations system, given in ma-
trix form by Eq. (7) is iterative. For the initial iteration (h=0)
the initial values are needed. The symmetrical phase volt-
age “flat profile” is preferred for the initial values: 1 p.u. for
the PQ) type and specified magnitude values for the PxV
type buses. Assuming cos ¢, factor (usually nominal) for the
block (generator and its step-up transformer), the initial val-
ues of the injected reactive powers into Px V' type buses are:

QF = Py ,tgeg, g€ {PV}. (®)

The positive-sequence injected currents initial values, in
this type of buses, can be calculated from the equation, which
expresses the total injected power in the same bus:

ULy ULUS Y UsUsY s =Py, +Q; /3, € {PsV}.

The negative- and zero-sequence injected currents into
PsV and 6V type of buses, in every iteration are:

I =0; I3 =0, ge{PsV}U{fV}.
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Zero valued currents are obtained by suppression of the
negative- and zero-sequence admittances (equivalent of gen-
erator and it’s step-up transformer) into reduced power sys-
tem node-admittance matrix Y 4ic . (section I1).

Taking into account all mentioned above, the complex
voltages in the sequence circuits nodes, can be calculated in
a few steps, for each iteration h.

Sep 1. The positive-sequence injected current in buses
type P V' (with subscript g) are calculated by following pro-
cedure:

a) Complex voltages in iteration h, are corrected with
specified magnitude and calculated argument, as:

U (n) = Ug(n) UL, [UZ(h),

b) With the values from iteration h, the injected reactive
powers are calculated as:

Q} (h) 2 3L, (U (h) I (h) — Uy (h) Uy (h) Y,

~ U Uy (k) Yy
c) The generator internal bus complex voltage E &, (k) is
calculated from the equation for total injected power in the

bus g:

P, i@ (h) = 3| Eh, (h) — U ()] Yarul* (h)

— UL (WU (WY — 3U5 (WU (WY .
d) The new “more correct” value of the positive-sequence
injected current is obtained as:

Lih+ 1) = [Edh) - Ui Y

Sep 2. In this step the positive-, negative- and zero-
sequence injected currents in the buses type PQ are calcu-
lated.

a) By the complex sequence voltages Qﬁ(h), Q;(h),
U, (h), the phase complex voltages U (h), Qg(h) and U, (h)
are calculated.

b) The phase injected currents are calculated by the speci-
fied powers, with equations:

Ly(h+1) = —(Py +3@Qp)" /U (),
D(h+1) 2 = (P4 Q) /Ul (h), ©

Lo(h+1) 2 = (Pg + Q)" /U ().

c) If the phase to sequence domain transformation is used,
from the phase injected currents (Egs. (9)), the sequence in-
jected currents [;f(h+1), 1;(h+1) and I)(h+1) are obtained
Very easy.

Sep 3. The sequence injected currents calculated in previ-
ous steps are applied in the right side in Eq. (5). After appro-
priate transformation [7], the new modified system (Eg. (7))
with same sequence unknown complex voltages is obtained.
A very suitable method for this linear equations system solu-
tion is Gauss’s method of coefficient elimination.

Sep 4. If the convergence criteria is achieved, the iteration
procedure stops. But, if it is not achieved, a new iteration
going on from the step 1.

VI. Method Verification

The ALF solution for several power systems (including the
entire power system of the Republic of Macedonia) in sev-
eral asymmetrical states are performed with above presented
method. The results validity are compared with rezults ob-
tained by the well known Newton-Raphson and fast decou-
pled procedures in phase domain. The results are identical
among all methods. Althought the proposed method is lin-
ear, the eficiency in occupied CP memory and CP calculation
time is on it’s side, against the methods in phase domain [2].

VII. Conclusion

In this paper a new linear method for asymmetrical load-flow
solution in sequence domain is presented. Several recently
published procedures as: power system elements modeling
in sequence domain and the negative- and zero-sequence
equivalent admittances of the generator and it’s step-up trans-
former suppression into the power system node-admittance
matrix, are applied. A new reduced form of power system
node-admittance matrix is obtained by “overlapping” pro-
cedure. Nodal voltage equations for the power system with
reduced number of buses represents a linear model. A proce-
dure for the node injected sequence circuits currents calcula-
tion, needed for equations system solution is explained.
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