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Abstract – The expected benefit of using a fractal as a dipole
antenna is to miniaturize the total height of the antenna at reso-
nance, where resonance means having no imaginary component
in the input impedance. In this paper three types of fractals are
investigated as dipole wire antennas. They include two planar
structures, Koch curve and a fractal tree, and a three dimen-
sional fractal tree. These three types of fractals are compared
among each other and to a straight dipole. The starting struc-
ture for each of these fractal geometries is straight dipole that is
resonant in the PCS band, at 1900 MHz. In the simulation, the
antenna height is held constant and the frequency is swept. It
can be seen that the resonant frequency decreases as the num-
ber of fractal iterations increases. The decrease in resonant fre-
quency can correlate to a miniaturized antenna, if the resonant
frequency would be held fixed.

Keywords – Fractal antenna, antenna miniaturization, Koch
curve, fractal tree

I. Introduction

Although fractals are mainly discussed in mathematical
forums, they exist in all parts of nature. For example Mandel-
brot [1] discusses the basics of fractal theory as applied to the
characteristics of a coastline (Fig. 1.). The length of a coast-
line depends on the size of the measuring yardstick. As the
yardstick we use to measure every turn and detail decreases
in length, the coastline perimeter increases exponentially. As
the view of a coastline is brought closer, we discover that
within the coastline there lie miniature bays and peninsulas.
As we examine the coastline on a rescaled map, we discover
that each of the bays and peninsulas contain sub-bays and

Fig. 1. Fractal-generated coastline

1Authors are with Faculty of Electronic Engineering, Beogradska 14,
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sub-peninsulas. There is a self-similar trait observed as we
look at the coastline at various resolutions. The number of
microscopic structures begin to approach infinity. In fact, be-
cause of the immense number of irregularities, the physi-
cal length of a coastline is virtually infinite. Self similarity
(seen in the coast example above) is defined by structures
that look the same at variable magnifications. This recurring
self-similarity is one of the many attributes of many fractals.
Much like the coastline described above, any small part in a
self-similar fractal is going to look exactly like the fractal as
a whole.

Fig. 2. Initiator/generator fractal

Another type of figure uses a generator/initiator relation-
ship system of construction. This construction begins by
placing an ”initiator”, which will be the base format for the
figure. The initiator is then divided into a collection of lines
upon which the generator(s) will be placed. Fig. 2. shows
the initiator and its first stage of growth where the lines are
replaced, or added to, by one of the two generators. Once
the generators replace the lines belonging to the initiator, the
generator may repeat ”n” number of time, or a different gen-
erator may begin growth upon the one already in place.

II. Koch Curve

The first fractal shape that is investigated as a dipole antenna
is Koch curve [2,3,6]. The geometry of how this antenna
could be used as a dipole is shown in Fig. 3.

A Koch curve is generated by replacing the middle third of
each straight section with a bent section of wire that spans the
original third. Each iteration adds length to the total curve.
This can be seen from the figure depicting the generating
process (Fig. 3.). Each iteration results in a total length that is
4/3 times the original geometry. However, the original over-
all height of the fractal does not change from one iteration to
the next. Therefore, if the process is carried out for an infi-
nite number of times, the curve would have an infinite length
while the overall height would not change.

The starting structure that is used is a half of a resonant
PCS dipole, which is 3.75 cm in length. The overall length
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Fig. 3. The various fractal geometries are configured as dipoles, in-
cluding a Koch fractal, a fractal tree and a three dimensional frac-
tal tree. The starting size of the geometries are identical PCS band
dipoles.

of the resonant dipole is 7.5 cm, which is slightly smaller
than ��� at 1900 MHz.

The total length of the Koch curve is given by:
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where � is the number of iteration and � is the height of the
straight starting generator.

These fractals are analyzed as resonant dipole antennas
using WIPL-D software [4]. The input match, compared to
50�, of the fractal dipoles and straight dipoles as calculated
are shown in Fig. 4. It can be seen how the resonant fre-
quency drops as the number of generating iterations for the
fractal is increased. Also, it is interesting to note that the res-

Fig. 4. Simulated input match of the straight dipole and the first five
iteration for the Koch dipole antennas matched to 50 �

Fig. 5. Simulated input impedance for the first five fractal iterations
of Koch dipoles plus a straight dipole for comparison. a) input re-
sistance b) input reactance

onant frequency approaches an asymptotic limit. This limit
gives an insight into where the resonance of an ideal Koch
fractal curve as a dipole would lie, if such a structure were
manufacturable. The simulated input impedance plots are
shown in Fig. 5.

III. Fractal Tree

Another type of fractal that can be utilized as a dipole is a
fractal tree. The geometry of how the fractal is used is shown
in Fig. 3. This deterministic fractal is a simple model of
branching found in nature. Again, the goal of using this type
of fractal is to reduce the height of a resonant dipole antenna.

The fractal is generated by applying an iterative sequence
to the starting structure. The fractal is started with a simple
monopole. The top segment of this monopole is then split
at a pre-determined angle, � � ��

Æ, to form the first two
branches. As the iterative process continues, the end segment
of each branch splits into two more branches. The total elec-
trical length of the conductor, �, remains constant throughout
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Aleksandar Atanasković, Bratislav Milovanović

the iterative process. The total electrical length can be de-
fined as the shortest length from base of the fractal to any
other end. The lengths of each straight section in the first five
iterations are shown in Table 1. It can be seen from the sec-
tion lengths that the total conductor length, �, always adds up
to unity for each iteration.

Table 1. Length of each straight section of the fractal tree and 3D
fractal tree for the first five iterations

The first five iteration plus a straight dipole were analyzed.
In the previous section describing the Koch dipole antenna,
the overall height was maintained from iteration to iteration.
For the tree fractal, the total length of the conductor path is
maintained among iterations. The subsection size for each
iteration of the antenna is the same.

The input match, compared to 50�, of the fractal dipoles
as calculated are shown in Fig. 6.

Fig. 6. Simulated input impedance matched to 50� for the first five
iterations of a fractal tree dipole with a split angle of 60Æ and for a
straight dipole

It can be seen that the resonant frequency drops as the frac-
tal iteration is increased. The ratio of miniaturization versus
the fractal iteration is very similar to that of the Koch dipole.
As the fractal iteration increased, the resonant frequency de-
creases in a saturating manner. At each iteration the extra
number of branches top loads the antenna. Even though the
electrical length of a single conductor path from the gener-
ator port of the antenna to the top of a branch is identical
for all antennas, there are more branches after each iteration.
This adds more conduction paths at the top of antenna serv-
ing as a top-loaded device. This, in turn, lowers the reso-
nant frequency at every iteration. It can be seen that the top

loadings effect diminishes as the number of iterations is in-
creased. The length of wire that branches out during each
iteration is almost half as small as the previous iteration, thus
the effect it has on the input characteristics of the antenna
diminishes.

IV. Three Dimensional Fractal Tree

A three dimensional fractal tree has a similar geometry as
the fractal tree. However, instead of branching in one plane,
the fractal branches out in three dimensions. The resulting
antenna exhibits similar benefits as the two dimensional case
to a greater degree. The geometry of how this type of fractal
can be utilized as a dipole is shown in Fig. 3.

The three dimensional fractal tree is generated in a similar
fashion as the two dimensional case. The top of a straight
monopole is split into four branches. The branches split off
at a set angle in two orthogonal planes. The angle used in
this case is 60Æ. The resulting four branches then split in a
similar manner. The ratio of the sizes of each of the branches
at each iteration is outlined in Table 1. For the purpose of
studying this fractal as an antenna, the first five iteration are
used. As before, this shows us the trends of the benefits of
using a fractal within the computational limitations of the
simulations. The fractal generated is mirrored at the base.
These antennas are simulated in a dipole configuration.

Fig. 7. Input match for various iterations of a three dimensional frac-
tal tree matched to 50 �

The simulated input match for the antennas is shown in
Fig. 7. It can be seen how the resonant frequency decreases
as the fractal iteration is increased. In a similar fashion as
the previous fractal dipoles studied, the input resistance de-
creases as the fractal iteration is increased, resulting in a
poorer input match.

V. Fractal Dipole Comparison

The benefits of the various fractal geometries can be com-
pared. All of the dipoles that are compared have the same
starting height. The starting geometry is a resonant dipole
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Fig. 8. The resonant frequency for each of the fractal antennas ver-
sus the number of iterations for a Koch tree, a fractal tree, and a 3D
fractal tree in a dipole configuration as simulated with WIPL

that is 7.5 cm in length, resonant in the PCS band at
1900 MHz. The relative geometry of all of the compared
dipoles is shown in Fig. 3.

The benefits of using a fractal geometry are dependent on
the type of fractal that is chosen. A comparison of the minia-
turization of the antennas by increasing the number of gener-
ating iterations is depicted graphically in Fig. 8.

It can be seen that the miniaturization benefits of both two
dimensional structures, the Koch fractal and the fractal tree,
are very similar. The benefits of the three dimensional fractal
tree, however, is more pronounced.

Even thought the three dimensional fractal miniaturizes
the antenna at resonance to a greater degree than the other
fractals, the input resistance is lowered by a significant
amount, as well.

It can be seen from Fig. 9. that the input resistance of the
Koch and fractal tree dipoles drops to near 30 � at resonance
for the fifth iteration. Likewise, the input resistance of the

Fig. 9. Simulated input resistance versus the number of generating
iterations for three fractal antennas

three dimensional fractal tree drops to 20 � due to the in-
creased amount of conducting branches. This would decrease
the match to a 50 � feed line. The fractal geometry chosen
for a particular application would have to weight the trade-off
between increased miniaturization versus input resistance.

It can be seen from the plots of the simulated input match
for the various dipoles that they are all narrow band antennas.
The simulated 3 dB bandwidth of the dipole antenna is about
2.4%. This can be compared with the 3 dB bandwidth of the
simulated fractals generated from the highest number of iter-
ations, which have the lowest resonant frequency. The simu-
lated bandwidth for the highest iteration of the Koch dipole is
around 3.1%. For the fifth iteration of the fractal tree dipole,
the simulated bandwidth is 4.2%. The simulated bandwidth
of the fifth iteration of the three dimensional fractal tree is
12.7%, but only has a -7.75 dB input match at resonance.

VI. Conclusion

Fractal dipole antennas have shown the possibility to minia-
turize antennas and to improve input matching. There are
three distinct advantages which are reached by using frac-
tal antennas. First, fractal geometries can be implemented to
miniaturize dipole antenna. Also, designing with fractal ge-
ometries can overcome limitations to improve the input re-
sistance of antenna that are typically hard to match to feed-
ing transmission lines. Furthermore, the self-similar nature
in the fractal geometry can be utilized for operating a fractal
antenna at various frequencies.
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