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The Influence of the Prediction Order onto the Accuracy of
a BPNN Tracking Filter
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Abstract – In this paper an investigation of the accuracy of a
BPNN tracking filter with respect to the model (prediction) or-
der is presented. The performances of some BPNN filters of dif-
ferent order are evaluated and compared with standard recur-
sive Kalman filter. Simulated and recorded real radar data are
used.
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I. Introduction

The basic operations for radar data processing (RDP) are
measurement formation, correlation and association of the
measurements to the existent target trajectories, and track
filtering and prediction. During the measurement formation
stage, it is accepted to work in inertial coordinate system, so
the measured kinematic parameters of the aircraft are natu-
rally obtained in polar coordinates, and next, if is necessary,
they are transformed in other coordinate system, more con-
venient for future work [1]. Different methods for track fil-
tering and prediction are used for estimation of the current
and future kinematic parameters (position, velocity, and ac-
celeration) of the aircraft. For tracking on multiple targets,
the achievement of high accuracy of the tracking filter is
very important quality of the algorithm for filtering and pre-
diction. This accuracy influences onto the quality of perfor-
mance of the algorithm for measurement-to-track classifica-
tion (data association) and plays a key role for correct clas-
sification decisions making. Two main types of tracking al-
gorithms are used in practice: probabilistic and heuristic [2].
The first, such as recursive Kalman filter (KF), fixed coeffi-
cients filters, etc., are based on the probabilistical theory. The
algorithms from the second group use simple heuristic rules
or score functions. The neural approach for RDP belongs to
the second group of algorithms. Its main advantages are the
naturally embedded principle of parallel processing, an inde-
pendence of the input data’s statistics and the mathematical
model of the observed dynamic system.

The kinematic model of non-maneuvering aircraft is
second-ordered (with nearly constant velocity), and is de-
fined by the equations [1,2]
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vectors �� � ���� ���� for coordinate �, � � �� �� 	. Each ��

contains position �� and velocity ���. The symbol � marks the
one of the target coordinates, and is used for notational sim-
plicity. The discrete time interval is noted by �. The matrices
� and � (both of dimension three) are mutually uncorrelated
random-valued processes, each with zero mean, known vari-
ance and uncorrelated with ��
�. The first, ����, gives the
random velocity’s changes, and the second, ����, models the
radar measurement errors. The noise covariance matrices and
the system matrices are, as follow [1]

� � ���� � � �
�
������ ���

�
�

� � ���� � � �
�
������ ���

�
�

� � ���	��� �� ����� � ���	��� �� ����

� � ���	��� �� ��� �

where the superscript 
 denotes the transpose operator and
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where 
 is the radar sampling interval.
In this paper a comparative analysis of the accuracy of

several tracking filters for non-maneuvering aircrafts us-
ing back-propagation neural network (BPNN) with differ-
ent architecture and different model (prediction) order for
one-step-ahead prediction is presented. The performances of
these filters are evaluated and compared with standard recur-
sive KF for 50 Monte Carlo (MC) runs with equal input data
in polar coordinates for all the filters at each run. An illus-
trative example using real radar data is shown. The experi-
mental results show that the tracking error and the quality of
BPNN training depend on the order of the filter and the best
results are obtained when more available information about
the tracking history is used.

II. BPNN for Time Series Prediction

A BPNN with static structure can be used as nonlinear pre-
dictor of a stationary time series [3,4]. In this case the ele-
ments of the input vector ���� are the past input data sam-
ples, i.e.
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where � is the prediction order, and the BPNN’s output vector
	���� produces the estimate ����� of the input vector for
one-step-ahead prediction as

	���� � ����� (4)
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The actual values of the elements of the input vector are
used as elements of the desired target vector 
���. The in-
put vector is applied to the input neurons of the BPNN. The
hidden neurons produce the weighted sum of their output sig-
nals, transformed by the sigmoid functions. By summing the
weighted output signals of all the hidden units, the output
neurons form the estimate of the time series. The prediction
error [3,4]

���� � �������� �������� (5)

for iteration � is propagates in backward manner in the neural
structure using the error back-propagation algorithm.

III. Design and Training of BPNN Tracking
Filters Using Different Prediction Order

Two BPNN architectures with one and two hidden layers and
different number of neurons in them are designed, trained,
and compared for this investigation. The input and output
layers contain equal number of neurons, � ��� � ���� � 	.
The numbers of neurons in the first and the second hidden
layer are denoted by ���	� and ���	� , respectively. They are
chosen in a heuristic way to achieve the optimal network ar-
chitecture for the concrete case [3,5]. The input and the hid-
den units have bipolar sigmoid functions with biases. The
output units are linear.

The input data for the BPNN tracking filter are the polar
coordinates range �, azimuth �, and altitude h of the mul-
tiple targets, which form the measurement vector � ��� at
each radar scan �. They are preprocessed by a normalization
procedure, so that they have zero mean and unity variance
to ensure better convergence of the training algorithm. Thus,
the input vector is formulated as [3]
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where �� �� � �� is the vector of the normalized measure-
ments for all targets. They formed the training set with length
� (� targets). After the data processing with BPNN, the orig-
inal variables are recovered by inverse normalization proce-
dure The maximum prediction order ���� � 	 is chosen in
view of track deletion criteria [1], the absence of measure-
ments for a given track for 3 consecutive radar scans.

The Nguyen-Widrow hidden weights initialization pro-
cedure [5] was used for the BPNN filter. It prevents them
from premature saturation during the first few iterations of
the training algorithm. The BPNN training is performed by
the back-propagation algorithm (BPA). The standard BPA
is based on the method of steepest descent, but a number
of modifications and variations of the standard BPA, such
as Newton’s and quasi-Newton methods, conjugate gradient
methods, etc. may also be used [2-4]. The equations of the
standard batch mode BPA for BPNN with two hidden layers
are, as follow [3,4].

Forward computations: Computing the net internal activ-
ity levels, the output signals of the neurons in the layers and
the error signals by the equations
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Backward computations: Computing the synaptic weight cor-
rections and the local error gradients of the neurons in the
layers as
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for the output layer
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for the second hidden layer, and
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for the first hidden layer, where � is the learning rate, and
��
�
�
� is the input signal for neuron � in layer �. The synaptic

weights are computed by iterations as
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In the case of BPNN with single hidden layer �� � �� �� the
corresponding values of the adjustable network parameters
are computed by analogy [3,4]. The net performance function
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for batch mode training is minimized as the weight changes
are accumulated over all training examples before the
weights are actually changed [3-5].

By local approximation of the error surface in the neigh-
borhood of the operating point � �
�

�� using Taylor series,
Eq. (16) can be written in matrix form as [4]
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where 
 � �
�� is the vector of local error gradient, and
� � ��


�� is the Hessian matrix.
The BPNN is trained by the algorithm of Marquardt-

Levenberg, which has the fastest and guaranteed convergence
compared with the other BP algorithms [4]. It approximates
the Hessian matrix by

� �
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where �� is the parameter of Levenberg, and I is identity ma-
trix. The training stop when the global minimum of the net
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performance function is found or the maximum number of
epochs or the maximum learning rate is reached. The track
filtering and prediction continues till the moment when the
track deletion criteria, the absence of measurements about
this track for three consecutive radar scans, is satisfied.

IV. Experimental Results

Simulated and real life data for 6 tracks of non-manoeuvering
targets, chosen in random way, are used for the computer
modelling. The real life data are recorded from Monopulse
Secondary Surveillance Radar CMSSR-401 [6] with sam-
pling time T=10 s. The real (live) tracks with length of 140
consecutive radar scans for the experiments are shown in
Fig. 1. They are used as prototypes to model the tracks for
the MC simulations, as follow. After polar to Cartesian trans-
form to equalize the dimensions of the coordinates, the mea-
surements from the first and the last radar scan, are connected
with straight line and spaced with scan time 
 to form the tra-
jectory of the non-manoeuvering target. The track 
 � is mod-
elled using the first and the last point of the section with con-
stant altitude and the first and the last point of the section with
varying altitude. Next each track is corrupted with Gaussian
noises, added directly to each coordinate to model the mea-
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Fig. 1. Live track used for the experiments

Table 1. MC simulations results: BPNN training performance and
computational costs
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Table 2. MC simulations results: BPNN and recursive Kalman fil-
ter’s averaged tracking errors
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surement errors according to the target kinematic model with
Eqs. (1) and (2). The cumulative distribution function of the
noises is verificated by chi-square test with significant level
� � 


�. Next the tracks are transformed back in polar co-
ordinates and then filtered by the algorithm under the test.
The standard deviations of the radar measurement errors are
0.05 nautical miles (NM); 


�Æ and 100 feet for �, �, and h,
respectively [6]. The acceleration’s standard deviation for KF
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Fig. 2. MC results: BPNN training performance comparison

142



Mimi D. Daneva

is 2 	���� [1]. The performances of BPNN tracking filters
with prediction order � are compared with those of standard
recursive KF. The tracking error �of each filter is defined by
the difference between the measurement vector and the es-
timated state vector [1]. The root mean square (rms) values

Fig. 3. MC results: BPNN tracking errors for range

Fig. 4. MC results: BPNN tracking errors for azimuth

Fig. 5. MC results: BPNN tracking errors for altitude

Fig. 6. BPNN and KF’s tracking errors for 6 real tracks

of � are averaged over all MC runs to form the rms error at
each time point. All results are obtained by Intel Celeron 500
PPGA with SDRAM 128 MB.

The results from 50 MC runs of the BPNN tracking filter
with prediction order �, compared with those of KF for tracks

� � 

are presented in Table 1 and Table 2. The averaged
BPNN’s parameters for the MC runs are averaged number of
epochs ��, the averaged net performance function at the end
of training ������
, and the rms value of �� for each coordi-
nate, averaged for the MC runs and for the whole track. The
results for h coordinate only for the track with variable alti-
tude and for one of the rest tracks are presented here, because
the results for the tracks with  � !���" are very similar.
The computational complexity of each filter is estimated by
the averaged parameters CPU time and number of Mflops,
used for data processing of all training examples (all mea-
surements for all the targets for scan �). The BPNN training
performances are plotted in Fig. 2; the tracking errors during
MC runs for �, �, and  for all tracks are plotted in Figs. 3 to
5. It is seen that the relationships among the BPNN training
parameters and the tracking error with respect to the predic-
tion order are very similar. When more information about the
tracking history of the targets is used, the net performance
function at the end of training is more close to the global
minimum. The network training time and flops increase dra-
matically as the number of hidden nodes in the layers in-
creases as well as � increases. The best performance of the
BPNN filter is with �=3 and BPNN with 12 hidden units in
a single hidden layer, the training is stabile and requires al-
most constant number of epochs. An illustrative example of
BPNN tracking performance for this case, compared with the
KF for the real tracks is shown in Fig. 6. The BPNN tracking
error has lower values than that of KF in all the cases. It is
clear that the highest tracking error appears when the BPNN
is initialized, and next this error decreases rapidly and keeps
almost constant in time. The BPNN initial errors are different
for each track, due to the different initial weights. The error
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due to recovering of the original variables after the inverse
normalization does not affect to the accuracy of the BPNN
algorithms.

V. Conclusion

This paper has presented an investigation of several BPNN
filters with respect to the used prediction order and track-
ing accuracy. They perform state estimation using non-linear
optimization, and do not require prior statistical information
on the noise and the target kinematic model. The optimal
BPNN architecture and prediction order is chosen by exper-
imental way. It ensures the highest accuracy than the other
considered cases, and consistently produces smaller track-
ing errors than the standard recursive Kalman filter for non-
manoeuvering aircrafts. It will improve the performance of
the measurement-to-track association logic algorithm in fu-
ture research.
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