
16-18 October 2003, Sofia, Bulgaria

A Comparative Analysis of Some Data Preprocessing
Techniques for BPNN Tracking Filter

Mimi D. Daneva1

Abstract – In this paper the performances of a BPNN tracking
filter depending on the method used for pattern formulation
are evaluated and compared. Several input data preprocessing
techniques are used for the investigation. The tracking error is
compared with this of standard recursive Kalman filter using
simulated and real radar database.

Keywords – Radar data processing, neural networks.

I. Introduction

The algorithms for filtering and prediction of the target tra-
jectories, also called tracking filters provide the estimate of
the current and future kinematic parameters of the aircraft,
used next in the data association process. The accuracy of
the estimate, provided by the filter, effects to a great degree
to the correct decision for data association, which by it re-
flects to the safety level in air traffic control [1]. As a part
of the total set of algorithms for multiple target tracking, the
algorithms for track filtering and prediction can be divided
in two groups: probabilistic and heuristic [2]. The tracking
filters based on artificial neural networks and the artificial
intelligence approach belong to the second group. They dif-
fer to the first group filters in two main features [3]. First,
they do not need to a priori knowledge about the statistics
of the input data, and second, these target state estimators
are ”model-free” – contrary to the statistical estimators they
can estimate input-output functions without a mathematical
model of how the output of the dynamic system depends
on its input. Using neural approach for data processing the
choice of appropriate method of input data representation is
an important factor for successful convergence of the train-
ing algorithm. In this paper, three methods for data prepro-
cessing and possible combinations of them, used for BPNN
tracking filter, are compared by Monte Carlo (MC) experi-
ment with respect to their training performance, the track-
ing error, the error due to recovering of the original variables
after data postprocessing, and the computational costs. The
performances of the BPNN filter using different data pre-
processing techniques are compared with standard recursive
Kalman filter (KF) by 50 MC runs. Simulated input data ac-
cording to kinematic model of non-maneuvering aircraft in
polar coordinates [1], [2] and real radar data records from
the plot extractor’s output of Monopulse Secondary Surveil-
lance Radar CMSSR-401 [4] are used for the investigation.
All experiments are implemented in MATLAB environment.
Interesting results are obtained.

1Mimi D. Daneva is with the Faculty of Communications and Commu-
nicational Technologies, 8 Kl. Ohridski str., 1000 Sofia, Bulgaria, e-mail:
mimidan@tu-sofia.acad.bg

II. Input Data Representation

The input data representation, pattern formulation or input
coding is a process of mapping the input feature space onto
a set of input units of the neural network (NN). The choice
of the most appropriate input coding effects onto the ade-
quate NN’s training performance and the error. For input data
representation, normalization coding (NC) is widely used for
pattern recognition, system identification or estimation pur-
poses. It represents the input feature accurately, and is distin-
guished with naturalness and computational simplicity [5].
The simplest form of normalization ranges the input data in
��; 1�or ���; 1� (NC1). In [6] it is recommendable to dis-
tribute the input data in the interval ��; 0.9� or ���,�; 0.9�
(NC2) to avoid the high nonlinearly zones of the neurons’
activation functions. The equations of NC1 and NC2 are as
follow [6]

�� � � ��� ����� � ����� � ������ � � (1)

�� � �,	 ��� ����� � ����� � ������ �.� � (2)

where �and �� are the original and the normalized pattern
vectors, respectively; ���� and ���� are the minimum and
maximum values of �.

The input data can also be normalized so that they will
have zero mean and unity standard deviation (NC3) as

�� � ����� � ��� � (3)

where �� and �� are the mean and standard deviation of P,
respectively (one-class normalization). This technique is ef-
fective for pattern classification purposes in the case of more
one class [5].

Usually, the pattern formulation process is considered as
an input space transformation, which transforms the dimen-
sion of the input space in more effective features [5]. If this
transform is linear, then the function that maps the input
space into the output variables for data preprocessing is well
defined, and the preprocessing task reduces to determine the
coefficients of this linear function with respect to minimize
or maximize some optimization criterion. One approach to
do it is a discrete cosine transform (DCT), which is widely
used for image coding. It originally was developed as an ap-
proximation of the optimal Karhunen-Loève transform, but a
number of fast algorithms have been developed for its com-
putation [7]. In MATLAB environment, one way to compute
the DCT is through the form DCT-IV as [8]

�DCT��� � ����
��
���

����
���
����� ���� � ��

�	
� � (4)

145

A Comparative Analysis of Some Data Preprocessing Techniques for BPNN Tracking Filter

where ���� �

�
��
�
	� � � ��

��	� � � k � 	
, 	 is the length of

�, and � is the discrete time. The DCT is a purely real or-
thogonal transform, which can be used as an additional trans-
formation of the input space before normalization and next
processing by the neural network.

The input data for the proposed BPNN tracking filter for
non-maneuvering targets are the polar coordinates range

in nautical miles (NM), azimuth angle � in rad, and the alti-
tude � in feet for 6 non-manoeuvering targets. They are pre-
processed independently using NC1, NC2 and NC3, and by
DCT followed by NC1, NC2 and NC3. The goal is to choose
the most appropriate input data preprocessing technique for
the BPNN tracking filter, accordingly to the specific high ac-
curacy requirements and acceptable computational costs [2].

The block diagram of data processing with BPNN track-
ing filter is shown in Fig. 1, where W and B denote the
weight matrix and the bias vector of the BPNN, respectively.
The prediction error of BPNN is denoted by �BPNN ��� �. It
propagates in backward manner in the neural structure by the
training algorithm. The relative error due to reconstruction of
the original variables after the data postprocessing is defined
by [8]

���� �
� ������ �

� � � � (5)

For comparison of the results the same input data as for the
BPNN filter are processed by standard recursive Kalman fil-
ter (KF) [1,2]. The tracking error for a single target is defined
by

� �� �� � � �� ������ �� �� � (6)

where H is the measurement matrix.

Fig. 1. Block diagram for track filtering and one-stepahead predic-
tion with BPNN

III. Architecture and Training of BPNN
Tracking Filter

The BPNN employed is fully connected and has 3 input
nodes, a single hidden layer with 12 units, and 3 output units.
The input and hidden neurons have bipolar sigmoid func-
tions, the output neurons are linear. This architecture was
chosen as optimal in heuristical way [6] by separated ex-
periment. The BPNN can be used as nonlinear predictor of
a stationary time series [9]. In our case the elements of the
input vector are the past samples of the preprocessed radar
measurements, i.e.

���� � ��� �� � �� � �� �� � �� � � � � � �� �� � ���
� (7)

where�� �� � ��is the measurement vector after preprocess-
ing procedure, and �=3 is the model (prediction) order. The
actual values of the elements of the input vector are used as
elements of the desired target vector ���� ���. The BPNN’s
output vector �� ��� produces the estimate ����� of the in-
put vector for one-step-ahead prediction as

�� ��� � ����� � (8)

The Nguyen-Widrow hidden weights initialization proce-
dure [6] was used for network initialization. The Marquardt-
Levenberg algorithm, which has the fastest and guaranteed
convergence compared with the other BP algorithms [3], [9],
was used for BPNN training. The training stop when the
global minimum of the network performance function [9]

� �
�

�

	�

��

�
 �
1
2

	�

��

�����
���

���
 � ��
�
� (9)

is reached, where ��
 and ��
 are the desired target and
the actual output signal of the �-th output neuron for the
�th training example is found, or the maximum number of
epochs or the maximum learning rate. The track filtering and
prediction continues till the moment when the track deletion
criteria [1], the absence of measurements about this track for
three consecutive radar scans, is satisfied.

IV. Experimental Results

Simulated and live data for 6 tracks of non-manoeuvering
targets, chosen in random way are used to form the training
set for the computer modelling. The real data are recorded
from the plot extractor’s output of CMSSR-401. The mea-
surement errors are 0.05 NM; �.0�Æ, and 100 feet for
, �,
and �, respectively; the radar sampling time is � � �� s [4].
Different random input sequences are generated for each MC
run to simulate the measurement errors. Their normal cumu-
lative distribution function is verificated by chi-square test
with significant level � � �.��. The real tracks with length
of 140 consecutive scans for the experiments are shown in
Fig. 2. They are used as prototypes to model the tracks for
the MC simulations, as follow. After polar to Cartesian trans-
form to equalize the dimensions of the coordinates, the mea-
surements from the first and the last radar scan, are connected

146

Mimi D. Daneva

Fig. 2. Live tracks used for the experiments

Table 1. MC simulations results: BPNN and recursive Kalman fil-
ter’s averaged tracking errors

with straight line and spaced with scan time � to form the tra-
jectory of the non-manoeuvering target. The track � � is mod-
elled using the first and the last point of the section with con-
stant altitude and the first and the last point of the section with
varying altitude. Next each track is corrupted with Gaussian
noises, added directly to each coordinate to model the mea-
surement errors. Next the tracks are transformed back in po-
lar coordinates and then filtered by the algorithm under the
test. The tracking error �of each filter is defined by the dif-
ference between the measurement vector and the estimated
state vector [1]. The experiments include 50 MC runs and
track example using real radar data. The BPNN filters with

Table 2. MC simulations results: BPNN training performance and
computational costs

cases of preprocessing NCs 1 to 3, with and without DCT as
an additional data preprocessing are compared with KF. The
root mean square (rms) values of � are averaged over all MC
runs to form the rms error at each time point. The accelera-
tion’s standard deviation for KF is �� m/s� [1]. The averaged
BPNN’s parameters are the averaged number of epochs ��, the
averaged net error function at the end of training � ����, and

Fig. 3. MC results: BPNN training performance comparison

Fig. 4. MC results: BPNN and KF tracking errors for range

147

A Comparative Analysis of Some Data Preprocessing Techniques for BPNN Tracking Filter

Fig. 5. MC results: BPNN and KF tracking errors for azimuth

Fig. 6. MC results: BPNN and KF tracking errors for altitude

Fig. 7. BPNN and KF’s tracking errors for 6 real tracks

Table 3. MC simulations results: averaged relative error due recov-
ering

the rms value of �� for each coordinate, averaged for the MC
runs and for the whole track. The computational complexity
of each BPNN filter is estimated by the averaged parameters
CPU time and number of Mflops, used for data processing of
all training examples (all measurements for all the targets for
scan �). All results are obtained by Intel Celeron 500 PPGA
with SDRAM 128 MB.

The results from the MC runs are presented in Tables 1 and
2. The BPNN training performances are plotted in Fig. 3,
the tracking errors during MC runs for all the coordinate
for all tracks are plotted in Figs. 4 to 6. The BPNN filters
with NCs 1 to 3 produce smaller tracking errors than the
KF. The best BPNN performance is achieved when NC3 is
used. That is due to the specific quantities of data prepro-
cessing in this case, which promotes the speed and learning
convergence of the BPNN filter. In the cases of DCT&NCs
1 to 3 the BPNN filter needs less training time, epochs, and
Mflops, but the learning convergence and the tracking per-
formance degrade. Till this moment all BPNN filters are in-
vestigated with one and the same value of the parameter goal
���� � ������� during the training. Obviously this value is
insufficiently small for the cases of all DCT&NCs. An ap-
propriate correction of the goal will improve the training, but
in Figs. 4 and 6 we can see that the BPNN initial errors for
these cases are quite high (they are greater than these of KF).
That is due to the specific quantities of the DCT, which in-
creases the distances between the classes (i.e. the tracks) in
the transformed space. This is suitable for data classification
purposes, but in the case of time-series prediction make the
initial accuracy worse. In the cases of NCs 1 to 3 the BPNN
tracking errors are smaller than the KF. The best results of
the BPNN filter are obtained using NC3. This conclusion is
confirmed with the example of multiple-target tracking using
real radar data record, shown in Fig. 7. The averaged relative
error due to re-construction of the original variables after data
postprocessing is presented in Table 3. It is due to rounding
during the mathematical operations and does not affect to the
tracking accuracy of the filters, because the recovering of the
data is 100 %.

V. Conclusion

In this paper the results of an experimental comparison
among three methods for input data preprocessing and some
combinations between them before target track filtering and
prediction then has been presented and analyzed by Monte
Carlo experiment. The results show that these preprocessing
techniques influence onto the BPNN training and it’s tracking
performance. The smaller tracking errors of the algorithm are
obtained when a normalization coding with zero mean and
unity standard deviation is used. It improves the accuracy of
the tracking algorithm and reduces the computational costs.

148

Mimi D. Daneva

References

[1] S. Blackman, Multiple Target Tracking with Radar Applica-
tions, Norwood, Artech House, 1986.

[2] Y. Bar-Shalom (editor), Multiple-Target Tracking, vol. I,
1990, and vol. II, 1992, Dedham, Artech House.

[3] B. Kosko, Neural Networks and Fuzzy Systems, Prentice Hall
International, 1992.

[4] Monopulse Secondary Surveillance Radar System Descrip-
tion, Technical Report, Cardion Inc., Report No. 131-162A.

[5] K. Fukunaga, Introduction to Statistical Pattern Recognition,
New York and London, Academic Press, 1972.

[6] C. G. Looney, Pattern Recognition Using Neural Networks,
New York, Oxford University Press, 1997.

[7] J. H. McClellan, C. Sidney Burrus, A. V. Oppenheim, T.
W. Parks, R. W. Schafer, H. W. Schuessler, Computer-Based
Exer-cises for Signal Processing Using Matlab��, New Jer-
sey, Prentice Hall, 1998.

[8] Signal Processing Toolbox User’s Guide Version 4.2, The
Math Works, Inc., 1998-1999.

[9] A. Cichocki, R. Unbehauen, Neural Networks for Optimiza-
tion and Signal Processing, Stuttgart, John Wiley & Sons &
B. G. Teubner, 1993.

149

