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Least Squares Image Resizing
Atanas Gotchev1, Karen Egizarian2, and Tapio Saramaki3

Abstract – - This invited paper considers the problem of re-
ducing the size of a digital image as a problem of construct-
ing a proper polynomial spline approximation to a function
���� � �����. From this point of view, the crucial problem is
to design an appropriate reconstruction (basis) function. Then,
the analysis (projecting) function can be formed as biorthogonal
to the reconstruction one. The basis functions are chosen among
the class of the symmetrical and compactly supported modified
B-splines having both good approximation properties and effi-
cient realization structures. We review the theory of orthogonal
projections both in continuous (minimizing the L2 norm) and
discrete domain (minimizing the �� norm) and propose a con-
structive compromise yielding an efficient decimation structure
possessing good anti-aliasing properties. It is shown, by means
of examples, that with a considerably lower computational com-
plexity the proposed structure provides practically the same
quality for the restored images as the best existing structures.
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I. Introduction

Many image processing applications demand an effective
resizing algorithm. These applications include, among oth-
ers, digital zooming effects, equalizing the resolution for
different imaging and printing devises, and building multi-
resolution pyramids. The problem of image interpolation (re-
construction) can be accomplished by first fitting an appro-
priate continuous model to the discrete data and then re-
sampling the resulting image on a finer grid [1,2]. The prob-
lem of image size reduction is rather different, since the dec-
imation is vulnerable to aliasing effects if one samples the
same continuous model at a sparser grid. The classical dig-
ital signal processing theory dictates that a preliminary low-
pass (anti-aliasing) filtering is needed. The ideal low-pass
filtering is not a practically realizable option because it cor-
responds to the use of the sinc impulse response that is in-
finitely supported. Hence, the investigation efforts have been
concentrated in searching for solutions based on decimation
(pre-filtering) functions that are compactly supported and
have good anti-aliasing proper ties. Some designs using poly-
nomial or B-spline combinations have seemed to be perspec-
tive candidates [1,2]. These solutions have been originally
designed to be good interpolators (with good anti-imaging
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properties). The research question is how to adapt them to
the decimation problem. More formally, by considering those
kernels as basis functions generating polynomial spline sub-
spaces, the problem of down-sampling can be transferred to
the problem of designing a new signal approximation with
the minimum loss of information, thereby naturally leading
to a certain form of least squares (LS).

For B-spline bases, algorithms for rational [3] and for ar-
bitrary [4] scale conversion have been proposed, aimed at
minimizing the continuous �� error norm. In order to have
an input continuous function at hands, those algorithms ad-
vise a preliminary spline model fitting, as in the interpolation
case, and a subsequent continuous-time processing.

Another standpoint insists on minimizing the discrete ��
norm, based on the fact that the images are discrete and
the quality variations are assessed by means of the signal-to
noise ratio (SNR) that is a discrete �� measure. The drawback
of using the classical discrete LS is that there is a demand
to compute a pseudo-inverse matrix [9]. This computation
is not preferable even for the banded matrices that express
compactly supported bases.

In this paper, a new way is proposed for treating the ��

and �� solutions for the image decimation problem and it is
shown how they can be merged into a high-quality and cost-
efficient hybrid scheme.

II. Signal Decimation Problem

By assuming a separable basis functions, we downgrade the
image size reduction problem to the 1-D signal decimation
problem.

Consider an initial discrete signal ���� for � �
�� �� ���� ��� � � as taken from a continuous function ����
sampled over a uniform grid in the interval ��� 	�: � �
�
�� ���� 
������, 
��� � 
� � ���, 
� � �, 
����� � 	
that is, ���� � ��
��. This signal is desired to be deci-
mated into a signal ���� for � � �� �� ���� ���� � � over a
new uniform grid, determined by a larger step � ��� with
����  ���. Without loss of generality it is assumed that
���� � �, � � �, and 	 � ���� � �. Hence, the output
grid will be placed on the integer coordinates. The quantity
� � ��� � ����� � ������� � �� � � indicates the decima-
tion ratio. Fig. 1 illustrates the process.

The decimated signal should preserve the original signal
features as well as possible, i.e., having a proper reconstruc-
tion function one should be able to get a good approxima-
tion to the original signal from the decimated one. Hence, we
seek for a solution in a form of a projection onto some lin-
ear space generated by this well chosen reconstruction basis.
In Section III, we briefly review the problem of construct-
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Fig. 1. Image decimation problem in 1-D

ing different polynomial spline approximations to a function
���� � ����� being parameterized by its scale. Then we re-
turn back to the problem of signal decimation and comment
how it can be solved using the proposed formalism.

A. An interpolative solution

Before reviewing the LS approaches, we present a solution
that has been considered as good candidate for continuous (at
an arbitrary sparser grid) signal decimation [5,11]. Consider
a continuous model fitting for the discrete data given at the
coordinate grid � . To preserve the values of the given discrete
sequence we write the model as:

����� �
�
����������� �� (1)

where the modeling coefficients are obtained by the recur-
sive pre-filtering with the all-pole filter formed by the basis
function sampled at the integers as follows:

����� �
�
�

������������ �� where ���� � ����� (2)

Equivalently,

����� �
��
���

������int����� ��� (3)

where

�int��� �

��
���

������������ ��� (4)

Eq. (3) can be interpreted as continuous domain filtering
of the impulse train

�
����Æ����� �� by the function�int���,

rescaled to have its nodes over the grid � . Its Fourier trans-
form �int��� � ��������	
� has zeros clustered around
multiples of �� � ���. If we now resample ����� at the in-
tegers we will encounter aliasing effects due to the fact that

��  �� � �. In the contrary, we can take the continu-
ous filter as function specified at the integers (non-rescaled),
with zeros around �� � �, thereby generating good anti-
aliasing properties. This is equivalent to changing the order
of operation: first the continuous filtering and resampling is
performed followed by the recursive digital filtering. Writing
the continuous filtering and resampling as

����� �

������
���

������� � ��� (5)

the subsequent digital filtering leads to

���� �
�
�

������

������
���

������� � � � ���� (6)

While this solution has shown satisfactory performance for
certain class of signals [5], it is not optimal in LS sense. This
fact has some effect when resizing images.

III. Orthogonal Projection Paradigm

A. Function spaces and generating bases

Consider the following shift-invariant function space � ���
that is a closed subspace of �� and generated by a function
� as:

� ��� �
�
���� �

��
����

�������� �� � � ��
�
� (7)

Any function ���� � �� can be orthogonally projected into
� ��� by finding the corresponding discrete-time sequence
����. It gives the LS approximation with respect to the ��

norm defined by

��������
� ��� �� �

�
����������� (8)

The resulting approximation is given by

����� �

��
����

�������� ��� (9)

If the basis ��� � �� is not orthogonal, but only linearly
independent, then the orthogonal projection of ���� � � �

onto � is obtained by

���� � ����� 	��� � ��� �
�
���� 	��� � ���� (10)

Here, 	���� is the dual (bi-orthogonal) basis of ���� satisfying

	���� � � ��� (11)

and

	���� �

��
����

������������ �� (12)

where

���� �

�
������� � ����� (13)

The sequence ������ is the convolution inverse of the auto-
correlation sequence ���� [6]. If � is a symmetrical and com-
pactly supported function over� , then ���� is a symmetrical
sequence of length 
� � �.
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B. Spline-like basis functions

We choose our basis function � to be a compactly supported
piece-wise function constructed by B-splines:

���� � �mod��� �

��
���

�
���

����
���� � (14)

where ����� is the B-spline of degree ! being symmetrical
around the origin defined as

����� � ���� � �
�
�

!
� Æ
�
��
!� �




�
(15)

where

��� �

�
�� if � � �

� otherwise�
(16)

and where � � Æ��� � Æ�� � �� denotes the backward finite
difference, and Æ��� is the Dirac’s mass distribution [4].

Examples of such functions, apart the B-splines them-
selves, are the modified B-splines and moms studied in [1,2].
They have shown their superiority as bases for image re-
construction (interpolation) both because of their good per-
formance and low computational complexity. B-splines are
compactly supported over the interval ���
� ��
� and are
the most regular functions having the maximum order with
the given support. While the combinations (14) are not so
regular, because of the added low-degree terms, they can
be optimized to have good asymptotic approximation prop-
erties [2] or good anti-imaging properties in frequency do-
main needed for the signal reconstruction [1]. Furthermore,
the function given by Eq. (14) can be formed in such a way
as to have the support of the highest degree B-spline attend-
ing the combination, thereby resulting in the same compu-
tational complexity as with classical B-splines of the same
degree. Those, so-called splines of minimal support [7] can
be presented also as consisting of polynomial pieces of de-
gree � at every interval between integers for the interval of
its support, that is � � �:

���� �

��
���

��
���

�����
�
��
� � �



� �
��
� (17)

The latter form is more suitable for practical realizations.
The polynomial coefficients ����� in the �-th interval are
formed as linear combinations of the corresponding polyno-
mial coefficients ������ of the B-spline of degree !, attending
the �-th interval of the modified kernel

����� �

��
���

����
�
����� (18)

IV. Least Squares Solutions

There are two main problems in making a down-scale pro-
jection (decimation). First, the continuous function ���� is
not known. Hence, we cannot perform a true �� orthogonal
projection in the form of Eqs. (9), (10). One can avoid this
inconvenience by modeling this function with a continuous
model. Thus, the subsequent projection would minimize the

squared error between the approximation and the model. Sec-
ond, even if an appropriate continuous function is provided,
solving the integral given by Eq. (10) is rather problematic.
This is due to the fact that, while the synthesis (reconstruc-
tion) function is compactly supported, the analysis one is not.
Hence, in the continuous convolution described by Eq. (10),
there are two functions being infinitely supported.

Equally well, we can try to stay entirely in the discrete
domain seeking for a solution minimizing a certain discrete
norm. We shall present this alternative in the next subsection.

A. Minimizing �� norm

This solution is very well known and described in most of the
textbooks considering function approximations, bases, and
signal expansions [8,9]. We present it here briefly, in order to
use it later as a reference when comparing different solutions.

The discrete norm to be minimized is induced by the fol-
lowing discrete inner product over the grid � :

�"� #� � �
������
���

"�
��#�
�� (19)

being an approximation to the continuous inner product. It
induces a semi-norm given by

�������� � ��� �� � �
������
���

��
����
��� (20)

This semi-norm serves in quantifying the distance between
the approximation and the initial samples as follows:

���� ������� � ���
��

���� ������ � (21)

Here, � is assumed to be known only on the grid � , that is,
����� � ����. Assume ����� is reconstructed by the basis
��� � ��, as in (9), i.e. ���
�� �

�������
	�� �	��
� � $� �

����. The solution for the unknown coefficients � 	 , $ �
�� �� ���� ���� � � is given by the following system of normal
equations [8]:

�������
	��

� ������
���

��
� � ����
� � $�
�
�	 �

�

������
���

��
� � ������

for � � �� ���� ���� � �

(22)

or in the matrix form as follows:

���
��� � ��

�� (23)

� � ���
������

�� (24)

The matrix �����������
where ��� � ����, takes

the coefficients’ ����-dimensional vector � to the recon-
structed signal version ���
�� (���-dimensional). The matrix
�� ����������

� ��
� Grammian of the reconstruction ma-

trix ���. Usually, the system given by Eq. (22) is solved by
efficient methods for the matrix (pseudo) inversion taking ad-
vantage of the band structure of the matrix� . These methods
include, among others, the Cholesky factorization, and the
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Givens or Householder QR decompositions [9]. For example,
when performing the Cholesky factorization, the total num-
ber of floating point operations is (cf. [9]) ����� ����� �
��������� � ���� �������
� � ���%�����������

B. Minimizing �� norm

Remember that the initial signal is a discrete sequence ����
generated by uniformly sampling a certain unknown contin-
uous function ���� according to ���� � ��
�� � �����. This
makes it impossible to minimize directly the error �����������

.
Instead, a continuous model can be used:

����� �
�
����&�

� �
�
� �
�

(25)

for minimizing the error ������������
. The function&�, possi-

bly depending on a certain scale parameter ', takes the sam-
ples ���� into a continuous function ����� � ��. Having the
model given by Eq. (25), one can confidently apply the the-
ory of Subsection III.A, namely, the coefficients ���� can be
determined as in Eq. (10) as follows

����������� 	��� � ��� �
�
����� 	��� � ����

�����
�
�

����!�

�
�������� � !� ���� (26)

�����
�
�

����!�

� ��
�

����&�

� �
�
��
��
����!�����

�����
�
�

����!�
��

�

����

�
&�

� �
�
��
�
����!�����

�

Consider the convolution integral

���� �

�
��

� �
�

�
���� ����� (27)

It involves two continuous kernels with different sizes. By
properly selecting the kernel &� this integral can be solved
yielding the following linear model:

���� � �
�
�

������� � ���� (28)

Then, the procedure continues by sampling the latter at the
integers followed by digital filtering with the convolution
inverse ���. For a symmetrical sequence ���� with length

� � � and ( �)� �

��
���� ����)

��, digital filtering with
������ means an efficient realization of the IIR filter ��( �)�
[10]. Fig. 2 shows the entire algorithm.

Fig. 2. Continuous LS decimation

1) Solution of Munoz et al. A very elegant solution en-
tirely consistent with the continuous domain framework es-
tablished in Section II has been developed in [4]. Their work
concerns primarily B-splines of degree� as basis functions.

The first step in the algorithm is to match an interpolative,
continuous-domain, spline model to the discrete data ���� by
constraining the new function to have the same values at the
coordinate grid � . Thus, the modeling spline coefficients can
be obtained applying Eqs. (3) and (4). This is equivalent to
substituting the kernel&� by the interpolating function

&���� �
��
���

�	� �������� ��� ��� (29)

The benefit of the method proposed in [4] is that it involves
in the integral given by Eq. (27) two splines. A convolution of
two splines (of degrees� and* , correspondingly) is again
a spline of degree� �* � � [8,10]. When splines are rep-
resented by their B-spline expansion this integration can be
separated into low-complexity discrete-time operations such
as finite differences and running sums and the continuous in-
terpolation with the B-spline kernel of degree � �* � �
[4]. After some rearrangements in Fig. 2, the final algorithm
can be expressed as in Fig. 3 with the following steps [4]:

� Inverse filtering with �	� ��� for obtaining the initial
spline coefficients.

� �� � �� running sums �������.

� Re-sampling by a factor of ��� using the spline model
of degree 
� � �.

� �� � �� finite differences ������.

� Inverse filtering with �	������� for generating the new
spline coefficients.

� FIR filtering with the kernel 	� for obtaining the resized
signal.

Fig. 3. Continuous LS signal decimation using finite differences

V. A Hybrid Method

To overcome the difficulties in solving the integral given by
Eq. (27) we model the kernel&� by the Gaussian function

&���� � �
����������


	
+'�� (30)

While this is not an interpolating kernel, it allows us to
approximate the integral given by Eq. (27) when '
 �, as

���
���
&���� � ���

���
���

��������

	
+'� � Æ���� (31)
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It can be though as emphasizing the fact that we are inter-
ested in minimizing the error in �� sense especially around
the given discrete points. This approximation has sense, es-
pecially for a relatively small sampling step �, which is the
practical case in most of the images of interest. We will illus-
trate this assertion later by our experiments.

By using the above simplification, we get a particular form
of Eq. (28), where ���� is formally replaced by ���� as:

���� � �
�
�

������� � ��� (32)

and

���� �
�
�

����!�
�
�
�
�

�������� !� ���
�
� (33)

Eq. (33) can be regarded as a form of Eq. (24) where the
matrix inversion ���

���� is substituted by the digital re-
cursive filtering ��( �)�.

When the compactly supported piece-wise polynomial
functions in the form of Eq. (14) are used, the inner sum
in Eq. (33) can be realized very efficiently by using the so-
called transposed modified Farrow structure [11,5,12]. We
will discuss this realization in the next subsection.

A. Transposed Farrow structure

Recall that our basis functions are composed from B-splines
up to degree � in a combination preserving the support of
the highest degree B-spline. Hence, they are formed of poly-
nomial pieces as in Eq. (17).

By substituting Eq. (17) into Eq. (32) and sampling at the
integers we get

���� � �
�
�

����

��
���

��
���

�����
�
� �
� � �



� �� ��

��
�

(34)
Changing the order of the summations results in the fol-

lowing practically realizable form

���� � �
��

���

��
���

�����
�
�

����
�
� �
� � �



� �� ��

��
�

(35)
The innermost sum contains input signal samples inside

an interval of the unity length weighted by fraction values
raised to various powers of  for  � �� �� � � . Denoting
those fractions by

,� � �$ � 
�� for � � 
� � � � � (36)

results in the practical implementation scheme shown in
Fig. 4, known as the transposed modified Farrow structure
[11,5,12]. It contains��� filters with coefficients ����� de-
termined by the B-splines involved. The sampling rate con-
version [innermost summation in Eq. (35)] is made in the
accumulator blocks. The outputs of these blocks are used as
inputs to the fixed filters when ,� � ,���. Then, the accu-
mulators are reset for the new sample summation.

This structure realizes exactly the matrix multiplication
between the transposed basis sampled at the grid � and the
signal vector: ��

�. In �, the norm of each basis vector

��� � �� differs from ���. This would not be a problem if
we would realize the �� error norm minimization given by
Eq. (24). But, formally replacing it by Eq. (35), we have
no preservation of the constant in the output. For some re-
sampling ratio range this can cause visible periodic texture
artifacts in the smooth areas of the reconstructed image.
Therefore, we have to take care of the constant preservation
in the intermediate stage given by Eq. (34) before the IIR fil-
tering. It has turned out the above-mentioned problem can be
solved by using the local scaling factors � � as follows:

���� � ��
�
�

������� � ��� (37)

where
������ �

�
�

��� � ���� (38)

The local scaling factors �� depend on � . When perform-
ing uniform re-sampling on images, the same basis and the
same grid are used for all column-wise (row-wise) transfor-
mations, hence the scaling factors are the same. To obtain
them, what is needed is one more re-sampling operation on a
vector with the column (row) length composed of unities.

Fig. 4. Transposed modified Farrow structure for piece-wise poly-
nomial signal decimation

B. Relation with the �� solution

The method can be represented in the following matrix form

� � ��� �����
�� (39)

Here, the matrix �� ����������
is a band matrix containing

���� along its rows and ������������
is a diagonal matrix

containing the scaling factors as given by Eq. (38). To illus-
trate how close this solution is to the corresponding �� solu-
tion, the norm or the error matrix

� � ����
���� � ��� ����� (40)

has been computed for different values of �. Fig. 5 shows the
result for the case of cubic B-spline basis function.

It can be seen that the error between the true discrete LS
and the hybrid method is relatively low for decimation ra-
tios up to some value close to 0.9. After this value, the er-
ror increases considerably because the proposed model is no
longer adequate.
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Fig. 5. Error norm ������� for cubic B-spline basis. ��� � ���

VI. Comparative Analysis of Different
Decimation Schemes

A. Frequency-domain analysis

The schemes presented above can be considered as forms
of continuous-domain filtering of the impulse train � ��� ��

� ����Æ����� ��. This allows us to compare their ( s con-
tinuous frequency responses.

The interpolative scheme of Subsection II.A for the grid
on the integers has the frequency response given by

�int��� � ��������	
�� (41)

The continuous LS scheme of Subsection IV.A can be pre-
sented in the frequency domain as

���
��� �

���������

( ��	
����	�
�
� (42)

where ( ��	
� is the frequency response of the autocorrela-
tion sequence given by Eq. (13).

The new scheme takes in the frequency domain the fol-
lowing rather simple form:

������ � �����( ��	
�� (43)

The frequency responses are shown in Fig. 6 for the case
of cubic B-spline basis, that is, ���� � �����. As can be seen,
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Fig. 6. Continuous frequency responses of different decimation sys-
tems

all schemes possess anti-aliasing properties around multiples
of �out � � and are rather similar in the transition band.
The main difference appears in the pass-band where the LS
schemes provide better performances especially for frequen-
cies close to 0.5. The bump appearing in this region reflects
the duality in decimation and interpolation processes [13].

Next, we compare three different kernels realizing the
hybrid LS method. The first kernel is the following linear
combination of the cubic and linear B-splines: �mod��� �

����� �
��

���� ����
��� � �� [1]. The second kernel is the

following linear combination of the cubic B-spline and its

second derivative �������� � ����� � �
�������

���
[2]. The

third kernel is the cubic B-spline itself. Their frequency char-
acteristics for some well-optimized �’s are shown in Fig. 7.
What is seen is that the modified kernel, initially optimized
to possess good anti-imaging properties [1], has a flatter fre-
quency response for the dual function. This, combined with
the flatter region of the interpolator near to the cut-off fre-
quency, would give better preservation of the high-frequency
details in the processed image.
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Fig. 7. Continuous frequency responses of systems realizing �� LS
signal decimation with different kernels. For moms case � � ����;
for modified case ��� � ���� � �������

B. Quality assessment

We compare the quality by measuring the SNR between the
original image and the image resulting from a two-step pro-
cessing: decimation followed by reconstruction to the initial
size. In these two steps, the respective operators have been
chosen to be dual each other, thus complying with the LS
paradigm. We have realized also the interpolative scheme de-
scribed in Subsection II.A.

The well-known Barbara and Lena test images of size
��
� ��
 have been processed. We changed the target size
from ��� �� to ���� ��� and built the SNR curves for dif-
ferent methods, as shown in Figs. 8 and 9. We related also
the SNRs ?60 of the �� solution and our solution (denoted
as �� � ��) to the pure discrete (��) solution. The proposed
method performs equally well compared to the original � �
solution up to a certain target size close to the original im-
age size. After that, it fails. The same is true also for the
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Fig. 8. Fig. 8. a) SNR for different decimation schemes; b) relative
SNR to Target size l2 scheme. Barbara image processed
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Fig. 9. Same as in Fig. 8 for Lena image

�� solution when compared to the �� solution, although for
a higher size, because its corresponding continuous model is
more adequate than ours for large and close to unity sampling
steps. Although the relative differences to the �� solution can
be quite large (up to 5 dB), the absolute values of SNR are
higher than 32 dB, indicating subtle variances from the orig-
inal image.

As far as the interpolative method is concerned, it per-
forms always worse than the LS methods. This is less visible
for small target sizes, where more aliasing is introduced for
the frequency content close to 0.5. However, for moderate
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Fig. 10. (a) SNR for different decimation kernels. (b) Relative SNR
to the cubic spline kernel. Barbara image processed

decimation ratios it is evident that providing the good anti-
aliasing properties is not enough. Some better performance
in the pass-band is needed and it is provided by the higher
order IIR filtering assuring the LS optimality.

Three different kernels are compared in terms of their LS
decimation performance in Fig. 10. The benefit from using
modified B-spline basis vs. other bases is outlined by the
higher SNR, especially for low decimation ratios.

C. Computational complexity assessment

The computational complexity has been measured in terms
of the number of multiplications and additions required to
process one image row. We refer to Figs. 2 and 3 that help
to evaluate the number of operations for each step (see also
[5,4] for details).

For a kernel with the highest degree being� and the input
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Fig. 11. 12 NOR: �� method versus �� 	 �� method
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and output signals of lengths ��� and ����, respectively, the
numbers are summarized in Tables 1 and 2.

Table 1. Number of operations for �� method [4]

Algorithm step M ultiplications Additions 
1. Pre-filtering ((N 1)/2)(2m-1) ((N 1)/2)(2m 1) 
2. Running sums ---- (N+1)m
3. Interpolation   
 - Output grid (2N+1)(2N+2)n (2N+1)(2N+2)n
 - Filtering (2N+1)n (2N+1)n
4. Running diff.  ---- (N+1)n
5. IIR filtering  N(2n 1) N(2n 1) 
6. FIR filtering  ((N+1)/2)n ((N+1)/2)n
 Total:  ((N 1)/2)(2m 1)+ 

+(4N2+10.5N+4)n-N
3mN ((N 1)/2)+ 

+(4N2+11.5N+5)n-N

Table 2. Number of operations for �� 	 �� method

Algorithm step M ultiplications Additions 
1. Pre-filtering ((N 1)/2)(2m-1) ((N 1)/2)(2m 1) 
2. Running sums ---- (N+1)m
3. Interpolation   
 - Output grid (2N+1)(2N+2)n (2N+1)(2N+2)n
 - Filtering (2N+1)n (2N+1)n
4. Running diff.  ---- (N+1)n
5. IIR filtering  N(2n 1) N(2n 1) 
6. FIR filtering  ((N+1)/2)n ((N+1)/2)n
 Total:  ((N 1)/2)(2m 1)+ 

+(4N2+10.5N+4)n-N
3mN ((N 1)/2)+ 

+(4N2+11.5N+5)n-N

Fig. 11 shows the number-of-operations ratio (NOR) be-
tween two methods. As can be seen, the proposed method
reduces the computational complexity at least by factor of
two in terms of the number of multiplications and at least by
a factor of three in terms of the number of additions. This re-
duction is mainly due to the efficient computational structure
discussed in Subsection V.A and being a result of the com-
promise made when considering the continuous signal model
given by Eq. (32).

In order to be entirely consistent with the continuous LS,
the method described in [4] demands a pre-filtering to get
the continuous spline model and an interpolation with higher
degree spline. The proposed �� � �� method, in turn, helps
to lower the computations by compromising between con-
tinuous norm minimization and its discrete counterpart. The
�� method also involves running sums in its second step.
While this procedure can be realized rather easily, it should
be maintained carefully because it risks introducing over-
flow or round-off errors, especially for large size images.
Munoz et al. [4] have successfully avoided those potential
problems by introducing some small amount of additional
computations (not included in the comparison above). As far
as our method is concerned, it is not risky in this sense. We
have already commented the need of local normalization that,
in the case of images, is not so costly additional operation.
The computational complexity of our method can be reduced
even further by exploiting the symmetries of the sub-filters
-��)� in the transposed Farrow structure of Fig. 4 (see [5]
for a detailed analysis).

VII. Conclusions

In this paper, we reviewed the recent advances in perform-
ing image resizing and presented a novel method based on a
hybrid form of the LS. By taking the limit case in our contin-
uous model, we managed to simplify the �� norm minimiza-
tion problem and to make it resembling to its discrete coun-
terpart. However, the new solution is not the classical discrete
LS since, in fact, we replaced the matrix inversion – the most
costly operation in the discrete case – by a more efficient IIR
filtering. We commented some important details in realizing
the transposed Farrow structure, namely the need for a local
scaling (normalization). We showed that our method dramat-
ically lowers the computational complexity when the qual-
ity remains practically the same as in the classical discrete
case for a wide range of decimation ratios. Our method com-
petes successfully in quality with the state-of-the-art method
developed in [4] while being at least twice faster. We com-
pared also the performance of a number of spline-based ker-
nels, all of them having the same computational complexity,
but different approximation or anti-aliasing properties. It was
demonstrated that by properly optimizing the basis functions,
the proposed solution can be made very close to the classical
�� solution.
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