
16-18 October 2003, Sofia, Bulgaria

A Turbo Codes Delay Reduction Based on Probability
Density Evolution

Zafir Popovski1, Tatjana Ulcar-Stavrova2

Abstract – The turbo codes [1] are decoded in a iterative decod-
ing scheme [2] performing a predefined number of iterations
before the final decision comes up. Since the method is time
consuming, stopping rules can be apply to prematurely quit the
process, for the decoder has already done its job. This technique
requires a reasonable trade-off which should results in a aver-
age decoding speed increase while not sacrificing the decoder
performance.

Keywords – Stopping rules, number of iterations

I. Introduction

The turbo codes (TC) are a class of FEC (forward error con-
trol) codes, known as parallel concatenation of two or more
recursive systematic convolutional codes (RSCC), produced
by a turbo encoder composed of two or more constituent RSC
encoders (CEs) with input to each but one constituent en-
coder permuted by an interleaver of length � .

Fig. 1. Turbo encoder structure

Such a composition allows for replacement of the optimal
but rather complex maximum likelihood decoding algorithm
by two or more relatively simple constituent decoders to de-
code corresponding constituent codes one by one.

Fig. 2. Iterative TD with two MAP CDs

1Zafir Popovski is with the Faculty of Electrical Engineering, “St.Cyril
and Methodius” University – Skopje, E-mail: zpopovski@yahoo.com

2Tatjana Ulcar-Stavrova is with the Faculty of Electrical Engi-
neering, “St.Cyril and Methodius” University – Skopje, E-mail: tan-
jaus@etf.ukim.edu.mk

A simple SISO (Soft-In Soft-Out) maximum a posteriori
(MAP) decoder [3] which minimise the probability of bit er-
ror appears to be the best solution for component decoders
(CDs).

We consider only TCs with two CEs for which the coding
and decoding processes are shown on Figs. 1 and 2, respec-
tively.

The MAP algorithm provide as an output a real number
which is a measure of the probability of error in decoding a
particular bit. Since both CDs decode the same information
bit xi, coded twice but in different order, it becomes possi-
ble this extra information, named extrinsic information, li, to
be passed as input to the second CD allowing it to improve
its own output extrinsic which will be passed to the first CD
in the next iteration. The process is than iterated until reach-
ing a satisfactory degree of confidence regarding the received
noisy examples contained in length N sequence. This “satis-
factory degree of confidence” does not depend on the pre-set
number of iterations and can be reached in any of them. So,
the idea is to follow the extrinsic’s density evolution until it
reaches a “confidential threshold” and then cease the iterative
decoding process.

In the follow-up we first briefly present some published
rules and a ”magic genie rule” [4] used as a benchmark for
other rules to be compared with. Later we adopt a model
for probability density evolution of the extrinsic information
suitable to impose a confidential threshold and then explore
few threshold values and compare them with known results
through a “C��” turbo code simulation programme. The cri-
teria for comparison are decoding speed, BER and FER, and
computational complexity. At the end a conclusion is given.

II. Stopping Rules

Basically, all the stopping rules, by checking the stopping
condition at the end of each or each half iteration, attempt
to determine the moment when a frame can be reliably de-
coded. If the condition is true the iterative process is termi-
nated. Otherwise, it continues with the next iteration and, if
the stopping condition is never met, stops after a pre-set max-
imum number of iterations to prevent an endless loop.

Mainly, the stopping rules that cause the decoder to use a
variable number of iterations are divided in two main types,
hard and soft decision rules, both of which provide for a more
or less easy computation based on the data available during
the decoding process.

Hard decision (HD) rules evaluate the tentative decoded
bits (hard bit decisions) at the end of each or half iteration

222

Zafir Popovski, Tatjana Ulcar-Stavrova

and the decision is taken after detecting a consistency in two,
three or more successive full or half iterations.

Soft decision (SD) rules are based on comparing a met-
ric on bit reliabilities (soft bit decisions) with a threshold.
Suitable metrics used in [4] are the average and minimum re-
liabilities of the information bits.At each iteration, the turbo
coder computes the relevant metric and compares it with pre-
set threshold value.

Our rule belongs to the SD type rules but the turbo decoder
has to perform less computations than in any previously pub-
lished SD rule because it uses the actual density evolution of
exchanged extrinsics that contribute to the information bit re-
liabilities. Since the extrinsics density evolves from iteration
to iteration, the turbo decoder’s CPU only needs to compare
this evolution with a pre-set threshold. The only problem we
experienced is to conduct a comparison after the first itera-
tion, for some skewness in the density evolution appears on
the first constituent decoder’s noisy output which might re-
sult in falsely decoded bits at the end of the first iteration.
This mainly due to the lack of a extrinsic information for the
first constituent decoder at the first iteration.

The “magic genie” rule is an unrealisable (in reality) rule
useful for establishing an unbeatable performance bench-
mark against which the other rules are measured. For this
rule, the correct decoded codeword is immediately recog-
nised due to the foreknowledge of the transmitted bit se-
quence and it stops the iterative process in exactly the min-
imum number of iterations required to produce the correct
codeword.

III. Density Evolution Model

The iterative decoder can be considered as a non-linear dy-
namical feedback system as shown on Fig. 2.

Extrinsic information messages �� are passed from one to
the other constituent decoder. The message � � measures the
log-likelihood ratio for the �-th bit based on input massages
�� from all other bits but the �-th. So, if we assume that the
all-zero codeword is transmitted (with BPSK modulation it
corresponds to transmission of “+1”s on the channel) then a
positive value of the extrinsic information,� � � �, for each �,
will represent a favourable evidence toward determining the
true value of the �-th bit.

When the interleaver is large and random, the extrinsics
������� are independent and identically distributed with
probability density function 	��). As shown in [5], this pdf
is consistent (� � ����	���
	�����), its mean, � � ����,
is discrimination between the two densities 	��� and 	����,
and the error probability, � Pr�� � ��, can be evaluated
as � E�	
�	
 �����. Computed histograms of the � in

and �out extrinsics at the input and output of a SISO MAP
decoding module for a 4 states, rate 1/3, [1,5/7] � turbo code
are plotted on Fig. 3 for a number of iterations. As it can be
seen, the empirical probability densities 	�� in� and 	��out�
evolve with successive decoder iterations from narrow densi-
ties concentrated nearby � � �, to broader Gaussian-shaped
densities with increasing means as the iterations continue.
Ignoring some irregularities at the beginning of the process,

 3

[f(�in)

f (�out)

 -5 0 5 10 15 20 25 30 35

 5
15

15

 0.15

 0.10

 0.05

 0.00

 1

[�out]

[�in]

1

 3

5

 0.20

 0.15

 0.10

 0.05

0.00

 10
Eb/N0=0.6dB

 10

Eb/N0=0.6dB

Fig. 3. Evolution of the input and output extrinsics

this probability density function can be approximated by a
Gaussian density in which case its statistics depend on two
parameters: its mean � � E��� and its variance �� � Var���.

Fig. 4. Analytical density evolution model

A signal-to-noise ratio for such random variable can be
defined as SNR � ��
�� but since it is both Gaussian and
consistent, then �� � �� and, consequently, SNR � �
�.
This evaluation gives the best approximation of the empiri-
cally measured variance.

Now we can observe the input and output SNRs for each
decoder denoted as SNR1in, SNR1out, SNR2in, and SNR2out,
at each iteration as shown on Fig. 4. A non zero ��
�� from
the channel helps CD1 to produce a non zero SNR1out for the
extrinsic information despite starting with SNR1in � �. So,
for given value of ��
�� the output SNR of each CD is a
non-linear function of its input, denoted as G1 for CD1 and
G2 for CD2. Thus we have:

SNR1out � G1(SNR1in� ��
��� (1)

SNR2out � G2(SNR2in� ��
��� (2)

From the Fig. 5 it follows that SNR2in � SNR1out, so we
have

SNR2out � G2(G1(SNR1in� ��
���� ��
��� (3)

The G1 and G2 functions can be evaluated either directly
from the histogram of output �’s from the previous decoder

223

A Turbo Codes Delay Reduction Based on Probability Density Evolution

 0 1 2 3 4 5 6 7 8 9 10 11 12 [K]

 F

 0.55dB

 Eb/N0= 0.6dB 0.5dB

 Channel observation

 SNRi -1 SNRi

i

i
1

1 FmaxF;Fi ��

�

SNR

SNR i

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Iterative Decoder

Fig. 5. Noise figure versa the number of iterations

or to generate input �’s from a consistent Gaussian density
with mean � and variance ��. In our simulations we use the
former model to suit our intention and SNRs are computed
from the actual �-histograms as E���
�.

The decoder convergence is assessed by measuring the
change in the extrinsic information’s SNRs from one to the
next iteration which allows for defining a noise figure � as a
ratio of the input SNR of CD1 at the beginning of the itera-
tion to the output SNR of CD2 at the end of the iteration,

�� � SNR�	in
SNR��out � SNR���
SNR� (4)

So, the noise figure is bounded by 0 dB and, if its value at a
given iteration is less than 1, this indicates an improvement
in the SNR of the extrinsic information from the beginning to
the end of a iteration. If that is the case for the entire range of
CD1’s input SNRs, then, according to [6], the turbo decoder
will converge to the correct codeword. The increase of � is

Fig. 6. Variation of FER with the number of iterations

plotted on Fig. 5 for the rate 1/3, � � 	��, [1,(5/7,5/7)]
turbo code, for some values of ��
��.

Let now observe a typical variation of codeword error rate,
or frame error rate (FER), with the number of iterations, for
the same code at ��
�� � �� dB, given on Fig. 6.

A careful observation allows for drawing an analogy be-
tween Figs. 5 and 6. We can see on Fig. 6 that a FER of
about � � 	��� is achieved with 10 iterations and a further
increase of the number of iterations do not significantly re-
duce this error rate, reaching a value of about 	 � 	��� at
20 iterations. However, below 10 iterations, the difference is
great – one order of magnitude between 6 and 4 iterations.
The conclusion is that after the 10th iteration, the decoder is
wasting effort (and time) by continuing to iterate on about
95% of frames that are already decoded by then.

On Fig. 5, there is a dramatic increase of the � value in
approximately first � � iterations, reaching � � ���. The
following next iterations allow only for a negligible increase.
So, this � � ��� might be appropriate values for a threshold
to cut off further iterations because the decoder has already
gained enough reliability to come to a correct decision.

IV. Simulation Results

The performance results for this new stopping rule are pre-
sented in this section. We simulated rate 1/3 turbo codes with
very short block size, � � 	�� bits, with � � 	� iterations,
for some threshold values chosen to cover a reasonable range
of undetected frame error rates (FER). The performance for
each threshold is then compared with the performance of the
magic genie rule and the performance of the turbo decoder
operating with fixed 10 iterations.

Fig. 7 shows the results concerning the average number of
iterations per decoded frame as a function of the bit signal to
noise ratio, ��
��, for the chosen threshold values.

From these plots we can conclude that the average number
of iterations is roughly between 4 and 6 for � �
�� near the
so called “waterfall” region where the bit error rate (BER)
changes most abruptly. The number of iterations for each
threshold matches the corresponding number of iterations on
Fig. 5. Es expected, the average decoding speed increases

Fig. 7. Average number of iterations

224

Zafir Popovski, Tatjana Ulcar-Stavrova

Fig. 8. FER and BER for the stopping rule

with ��
��, for the decoded sequences converge to the cor-
rect codeword in fewer iterations. Also, as it is common for
all soft rules, there is a consistent offset from the average
number of iteration required by the magic rule.

Both, the FER and BER performance of this rule are com-
pared with the reference FER and BER performance curves
for � � 	� fixed iterations per decoded frame and for the
magic stopping rule with 20 iterations. The results for the
chosen thresholds are shown on Fig. 8.

Having in mind the skewness of the statistics in the first
iteration we didn’t allow the decoder to take decisions after
the first iteration, for there is a small number of first step
decisions and they usually result in falsely decoded bits. By
applying this measure, we noticed that the improvement in
BER and FER is much greater than loss in speed, so it has a
positive influence on overall performance.

The Fig. 8 indicates that the overall error rates of the turbo
code employing this stopping rule are noticeable better than
those for 10 fixed iterations as in any other soft stopping rule
case. In fact they are nearly equal to the error rates achieved
by a decoder using 20 iterations. Furthermore, it can also be
seen that this rule has no characteristic error floor of its own
(a matter of the length of the simulations), but the floor con-
strain is set by the inherent turbo code floor.

To get a deeper insight into the FER composition one
should consider four different conditions that can occur when
stopping rules are used by turbo decoder, depending whether
the decoded sequence is detected to be reliable or unreliable
and whether it is actually correct or in error. First is the case
of correct decoding when stopping rule is satisfied at some
iteration, � � ����, and the decoded sequence is correct.
Second case is when the rule is satisfied but the sequence
is actually in error which produces an undetected error. Next
case is when the rule fails to stop the decoder in � � ���� it-
erations and the decoded sequence is indeed incorrect which
corresponds to a detected error. The last case is when the se-
quence is declared as unreliable but is actually correct which
means a falsely detected error. A good stopping rule has a
small undetected error probability and a small probability of

 10-1

 10-2

 10-3

 10-4

 10-5

 10-6

 10-7

0.4 0.5 0.6 0.7 0.8 0.9
 Eb/N0, dB

 FER

 Undetected
 FER

F
E
R
 A
N
D
 U
N
D
E
T
E
C
T
E
D
 F
E
R

Fig. 9. FER and undetected FER for the stopping rule

falsely detected errors.
The Fig. 9 plots the overall FER and undetected FER for

this rule. We can observe that the undetected error rates de-
crease slowly over the entire range of tested ��
�� values.
Naturally, there is a small difference in FER values due to
the level of the thresholds. At low ��
�� the detected errors
dominate the overall FER, whereas at high��
�� values the
undetected errors are more contributory.

If the performance of this rule is compared with the other
mentioned soft rules, one can see neither significant advan-
tage in favor of this rule nor significant disadvantage. How-
ever, if we consider the soft rules from computational effort
and implementation complexity aspects, then this rule cer-
tainly has a comparative advantage.

V. Conclusion

In this article we propose a new type of stopping rules that
can be used to reduce the average number of iterations to
decode a turbo code. This type of stopping rules belongs to
the class of soft stopping rules but, for difference, it is based
on the evolution of the probability density function (pdf) of
the extrinsic information. A noise figure is defined through
the pdf parameters as a measure of quality of the extrinsic and
its values are used to set up appropriate stopping threshold.

We assessed our stopping rule in accordance with the eval-
uation process applied to evaluate other soft rules [4].

Though the performance simulation doesn’t show any sig-
nificant performance improvement for the range of tested
thresholds, this rule has an advantage of low computational
burden and low complexity requirements which make it more
suitable for implementation.

References

[1] C.Berrou, A.Glavieux and P.Thitimajshima, “Near Shannon
Limit Error Correcting Coding: Turbo Codes”, Proceedings
1993 IEEE Int.Conf. on Comm., pp.1064-1070, Geneva, May
1993.

225

A Turbo Codes Delay Reduction Based on Probability Density Evolution

[2] L.Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal Decoding
of Linear Codes for Minimizing Symbol Error Rate”, IEEE
Transactions on Information Theory, vol.IT-20, 1974.

[3] S.Benedetto, D.Divsalar, G.Montorsi and F.Pollara, “Soft-
Input Soft-Output Maximum A Posteriori (MAP) Module
to Decode Parallel and Serial Concatenated Codes”, The
Telecomm. and Data Acquisition Prog. Rep., Jet Propulsion
Laboratory, Pasadena, Sep’96

[4] A.Matache, S.Dolinar and F.Polara, “Stopping Rules for Turbo
Decoders”, TMO Progress Report 42-142, August 15, 2000.

[5] T.Richardson, A.Shokrollahi and R.Urbanke, “Design of prob-
ably Good LDPC Codes”, IEEE Transactions on Information
Theory.

[6] S. ten Brink, “Convergence of Iterative Decoding”, Electronics
Letters, vol.35, May 24, 1999.

[7] D. Divsalar, S. Dolinar, and F. Pollara, “Iterative Turbo De-
coder Analysis Based on Density Evolution”, TMO Progress
Report, pp.42-144, February 15, 2001.

226

