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Abstract – In this paper we propose a general approach for locat-
ing the invariant subspaces of some classes of third order digital
filters with two’s complement overflow. The proposed approach
is based on the analysis of the projection of the points of the
trajectories on adequately chosen directions in the filter phase
space.
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I. Introduction

Nonlinearities in digital filters and their influences on their
dynamics have attracted considerable attention in the last fif-
teen years. The very first works in this field [1,2], show that
even the simple systems like second order digital filters can
exhibit complex behavior due their two’s complement over-
flow nonlinearity. This phenomenon is manifested by exis-
tence of various types of trajectories in the digital filter’s
phase space which depend both, on the filter parameters, and
by their initial starting points.

In the farther papers, special attention was attended on the
third and the higher order digital filters operating out of their
stability region [3,4]. In these papers it was noticed that the
trajectories of the digital filters usually non-uniformly visit
various parts of the phase space, and in some cases they visit
regularly only some invariant-subspaces of the phase space.

In this paper we concentrate on the third order digital fil-
ters with two’s complement overflow nonlinearity, operating
outside of their linear stability region. For this type of filters
we develop a new, geometry oriented approach for localiza-
tion of the invariant subspaces visited by their trajectories.
The proposed approach is based on the analyses of the pro-
jection of the trajectories of the digital filter on suitably cho-
sen directions in its phase space, which depend on the filter
parameters.

The material in this paper is organized as follows. The
piece wise linear model of the third order digital filter is given
in Section II. In Section III, we develop expression for the
projection of the �-th iteration of a map on an arbitrary vector
in the phase space, and determine the criteria when the tra-
jectories of the digital filters visit finite number of planes into
the phase space. In Section IV we consider situation when the
Jacobijan of the map has at least one eigenvalue inside and
one outside of the unit circle, and determine the conditions
when the attractors of the map are localized in some com-
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pact parts (subspaces) of the phase spaces. In Section V we
illustrate and discuss our results and at last, in Section VI we
give some conclusions.

II. Piece-Wise Linear Model

The behavior of zero input, third order digital filter with 2’s
complement overflow can be described by the following sys-
tem of difference equations
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where: ���� is an almost odd function defined by:

���� � �� �� for � � � �� � � � � � ��� (2)

��, ��, �� are filter parameters; and �����, ����� and �����
are the filter internal states.

The behavior of the filter, can be also described by the
piece-wise linear map ������� � �� � �

�,
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This means that �� is divided into ������� subspaces ���,
� � 	�, separated by ����� parallel planes �,

� � �� � ��� � ��� �� � � �	�
������� (4)

(as illustrated in Fig. l).
By using � recursive iterations in (3), one can obtain the

expression for the �-th iteration of the map
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Fig. 1. Subspaces of the filter phase space �� for the filter with pa-
rameters � � ���� ��� ��� � ������� ����� ���� (eigenvalues of �
are �� � �, �� � ����, �� � ��	�

in which �� � � 	� �� 


� �� �� is an integer that corresponds
to the index of the subspace ���� visited by the -th iteration.
Hence, each trajectory of the map (3), starting from any ini-
tial point ��	� � �	, �	 � �

�, generates infinite symbolic
sequence �	��


�� 


 composed of the indexes of the visited
subspaces.

III. Invariant Planes

The characteristics of each trajectory, given by Eq. (5), de-
pend on both, the initial point ��	� and the properties of the
map which are determined by the Jacobijan matrix of the map
����, ������� � �.

We analyze the behavior of the map (3) under assumption
that the matrix � has full rank, rank��� � �, and that it
has 3 distinct eigenvalues ��, �� and �� with corresponding
eigenvectors ��, �� and ��. Without any constrains on the
eigenvalues of�, the projection of the �-th (�-arbitrary non-
negative integer) iteration of the map on a direction defined
by an arbitrary unit vector � in ��, � � ��, is
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If �, is an unit eigenvector of �� that corresponds to the
eigenvalue �� , ���

� �� � ����; � � �� �� ��, then the last
equation becomes
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By denoting ��
� �	 � ����	� and ��� � � ��, the last equa-

tion can be rewritten as
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Fig. 2. Trajectory of the filter with parameters � � ���� ��� ��� �
������� ����� ���� (eigenvalues of� are �� � �, �� � ����, �� �
��	), starting from �� � 
������ ����� ����

This equation is crucial for our further analysis of the in-
variant subspaces of the map (3).

If �� � �, then the last equation becomes
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Since ���� � �
� and �	 � �� � � � � � �� is an integer, it

implies that �	 � �� � � � � � �� must be a finite integer for
each �. Therefore, one can conclude that ���� belongs to a
finite set of parallel planes �� normal on ��

� [5], defined by
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Hence, for each initial point �	, we can determine the in-

variant set of points

���	� � �����	� � �
�� (12)

that satisfy ������	�� � ���	�; � � 	� �� �� 


 It means
that each trajectory that starts from any point of this set of
parallel planes remains on them. This property is illustrated
in Fig. 2 in which we present the first 20 000 points of the
trajectory of the filter (defined by the eigenvalues �� � �,
�� � ��
� and �� � 	
� of the matrix �), starting from
�	 � 
�	
��� 	
��� 	
��� .

Similar result could be obtained for �� � ��. In this case
Eq. (8) becomes

�
�
�
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 (13)

Since ���� � ��, it implies that ���� belongs to a finite set
of parallel planes ����	�  ����	� normal on ��

�
, where
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Hence, for each initial point �	, we can determine the in-
variant set of points

���	� � ������	�  ����	�� � �
�� (16)

that satisfy ������	� � ���	�; � � 	� �� �� 



If �, has eigenvalues �� � � and �� � �, then the in-

variant space of the map (3) becomes a set of parallel lines
collinear with the vector ���

� � �
�
� �, that intersects ��

���	� � �����	� � �����	�  ����	��� � �
�
 (17)

IV. Invariant Subspaces

It is obvious that the behavior of the trajectories of the map
(3), depend on the eigenvalues of the Jacobijan matrix �.
If � has at least one eigenvalue out of the unit circle then
each trajectory of the map is either periodic or chaotic. If the
trajectories are chaotic then they are all attracted by attractors
which are very strangely positioned in the phase space.

In this section we analyze the subspaces of the phase space
in which are placed all attractors in cases when the Jacobijan
matrix� of the map has at least one eigenvalue in the interior
of the unit circle, say ���� � �, and one eigenvalue out of the
unit circle, say ���� � �.

In this case, if �� is the eigenvector of�� that corresponds
to ��, the Eq. (8) becomes
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For sufficiently large �, Eq. (l8) could be further reduced to
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since ���� � � and ������ ����	��
�
� � 	.

The last equation can be rearranged in the following form
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By using the fact that ����� � �� � ����, we obtain
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from which we conclude that the projection of the �-th iterate
of the map (3) on the unit vector ��

� belongs to the interval

	���� �
�
������ � ���������� ������ � ���������
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(22)

����� � 
������ ������, determined by the index of the sub-
space visited in the �� � ��-st iteration of the map. Since the
number of subspaces ���� is ����� � �, the number of inter-
vals (22) is also ����� � �. If ����� � 	
�, then there will
be some gaps between those intervals. Therefore, all the at-
tractors of the map (3) will belong to the union of �������
disjointed subspaces of ��, ��� � �

��, defined by

�
 �
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�������

��� (23)

where ����� � �� � ����� � �
�
�
� � ������ � � �

��;
���� � 
������ �����, ����� � ��� � ��������� and �� �
���� ���������.

It means that each point of any trajectory of the map, after
certain iteration, will belong to some parts of the phase space
that are bounded by the planes � � � �� � ��

�
� � ������ and

�� � �� � ��
�
� � ������ normal on ��

�
.

In this case, the set �
 doesn’t depend on the initial condi-
tion �	 and it is definitely the invariant set of the phase space
since ����
� � �
 for any �.

V. Simulations

In this section we illustrate our analytical results by functions
of the histograms of the projections of the trajectories of two
suitably chosen third order digital filters that belong to the
observed classes of filters.

In Fig. 3, we present the histograms of the projec-
tions of the trajectory of the filter with parameters � �
���
��� �
��� 	
�� (starting from �	 � 
�	
��� 	
��� 	
��� )
on the eigenvectors of the transpose of the Jacobijan of the
map that describes the behavior of the filter. The Jacobijan
matrix has the following eigenvalues: �� � �, �� � �
�, and
�� � 	
�.

Fig. 3. Histograms of the projections of the first 20 000 points of the
trajectory of the filter on the eigenvectors of �� , binned into 1001
containers: a) projection on ��, b) on ��, c) on ��
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Fig. 4. Histograms of the projections of the first 20 000 points of
the trajectory of the filter with eigenvalues of �: �� � ����,
�� � ����, �� � ��� on the eigenvectors of �� , binned into 1001
containers: a) projection on ��, b) on ��, c) on ��

The histogram of the projection of the trajectory on the
eigenvector �� of �� that correspond to �� � � is discrete
with two clearly defined picks that correspond to projection
of the planes (Fig. 2) visited by the trajectory.

The histogram of the projection on the eigenvector � � of
�

� that corresponds to �� � 	
�, ����� � �� is localized
in two narrow isolated intervals, while the histogram of the
projection of the trajectory on the eigenvector �� of �� that
corresponds to �� � ��
� is non-uniformly speeded all over
the projection domain.

Although this filter does not satisfy the constrain ����� �
	
�, the projection of its trajectory on �� is concentrated on
a narrow region due to the nature of the admissible symbolic
sequences that correspond to the points of the phase space.
Numerous simulations have shown us that the width of the
isolated nonzero intervals of the histogram will start to spread
(and eventually it will begin to fractalize) by decreasing the
module of the eigenvalue ���� toward zero. When the condi-
tion ����� � 	
� is reached, the trajectory of the filter enters
the region �
 and remains there.

In Fig. 4 we present the histograms of the projections of
the trajectory of a filter described by a map which Jacobijan
have the following eigenvalues: �� � ��
�, �� � 	
�� and
�� � �
�.

In this case the condition ����� � 	
� is satisfied. There-
fore the histogram of the projection of the trajectory on � �

is located in five intervals 	�, � � ������ 	� �� �, with gaps
among them as illustrated in Fig. 4b. As ����� � 	, the
width of the intervals with nonzero histogram functions starts
to decrease (and fractalize) in favor of the gaps between
them.

The nature of the histograms of the projections of trajec-
tories on eigenvectors that correspond to eigenvalues that are
out of the unit circle is out of the scope of this paper.

VI. Conclusions

In this paper we have analytically located the invariant sub-
spaces of some classes of third order digital filters with two’s
complement overflow by using the eigenvalues of the Jaco-
bijan which describes the behavior of the filter. In cases of
real eigenvalues that belong to the unit circle, the invariant
subspaces are sets of parallel planes determined by the start-
ing point of the trajectories of the filter. In case of eigenval-
ues with sufficiently small modules, the invariant subspaces
are set of slices of the phase (each bounded by two paral-
lel planes) which are independent of the starting point of the
trajectories.
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