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Abstract – This paper presents a method for synthesis of inverse
filters with Hausdorf-type of transmission characteristics. The
frequency characteristics of the filters are determined and a
comparison with inverse Chebyshev filters is done.
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I. Introduction

Hausdorf filters are implemented via an approximation of the
“shifted” Delta-function with a Hausdorf polynomial of the
following type:
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where �� is a Chebyshev polynomial, � is the best approxi-
mation of a “shifted” delta function, � is parameter, defining
the hold bandwidth of the filter, � is the angle frequency.
Low-pass non-inverse filters synthesized using this type of
approximation have parameters identical to the Chebyshev
filters’ parameters. The pass bandwidth of these filters is nar-
rowed by a coefficient equal to one half of the Hausdorf dis-
tance �� [3].

Given the filter order � and passband ripple �� [dB], the
Hausdorf space � and the argument � could be found via the
following equations [2]:
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The inverse low-pass Hausdorf filters are of interest from the
syntheses point of view. They have a maximally flat pass-
band and an even ripple stopband.

II. Synthesis Implementation

The synthesis has the following prerequisites: filter order �,
cut-off frequency 
� and its transmission function attenuation
� �

�
������� � �, stopband frequency 
� and the Hausdorf

space ��.
The Hausdorf space �� can be derived by calculating the

transmission function of an inverse Chebyshev filter of the
same order for the stopband frequency:
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Next, the � of its low-pass filter prototype is determined as:
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and from equation (3) �� is derived.
The square of the transmission function module is derived

from the characteristic function, which in this case is the
Hausdorf polynomial:
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The two functions can be described as relations between the
three polynomials 
���, ���� and ���� of the complex fre-
quency � � ��. The polynomial 
��� is a strict Hurvitz poly-
nomial and its roots are the fundamental frequencies of the
filter, the roots of ���� are extreme frequencies for which the
transmission function has infinite attenuation. The answer to
the synthesis problem is usually found by determining two
of the polynomials, the third polynomial is the result of the
Feldtkeller equation:


���
���� � ��������� 
 ���������	 (6)

The roots of 
��� and ���� are derived as follows:
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The value of the transmission function, when the cut-off
frequency and the stopband frequencies are known, is:
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The value of the elements is calculated using the method-

ology described in [4] by transforming the variable � into a
new variable �:
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Based on this methodology, two different software programs
for filter calculation are offered in [3], called APPROX and
LC. When entering the input data, the frequencies resulting
from (8) need to be used.

III. Frequency Characteristics of an Inverse
Hausdorf Filter

A. Magnitude (amplitude) response

Using the synthesis method described above, a low-pass
Hausdorf filter of third order (� � �) has been calculated
assuming that the cut-off frequency is 10 KHz, the stopband
frequency is 15 KHz, 0.3 dB attenuation at 
�, input and out-
put resistance of 1 �. The electrical circuit is shown in Fig. 1,
and a computer simulation of the magnitude response of the
filter is shown in Fig. 2. The magnitude response of an in-
verse Chebyshev Filter with the same input specification is
shown in Fig. 3. The comparison of the two shows that the
Hausdorf filter has a steeper slop in �
� � 
�� interval. In
this case the attenuation of the stopband frequency is greater

Fig. 1.

Fig. 2.

Fig. 3.

than 4.2 dB. The maximum in the passband is greater than
1.85 dB. This is due to the fact that the extreme frequencies
of the inverse Hausdorf Filter are �������� times lower than
these of the inverse Chebyshev filter, as seen in equation (8).

B. Phase-frequency response

Polynomial 
��� is determined by solving the equation (7).
Shown as a rational function, after substituting � � ��, it is
broken into real 
	 and imaginary 

 polynomials. The same
is done for the polynomial ����, derived in (7). The Phase-
frequency Response is:
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The phase characteristics of Hausdorf and Chebyshev fil-
ters are shown on Figs. 4 and 5. They point out that the Haus-
dorf filters have worse linearity – it is 5.36% for the marked
frequencies.

Fig. 4.

Fig. 5.

C. Group delay time (GDT)

GDT is calculated from:
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Figs. 6 and 7 show the GDT graphs of the filters described
in the previous paragraph. It follows from the graph that the
Hausdorf filter has on overall lower values for ���, meaning
that it has lower reactivity. Comparing the two graphs, it is
calculated that the Hausdorf filter graph is 13.6% more non
linear.
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Fig. 6.

Fig. 7.

IV. Conclusion

The specific characteristics for the Hausdorf filters show that
they can be used in circuits requiring high attenuation for
frequencies close to the cut-off frequencies. Their lower re-
activity is a prerequisite for their use in cases when a greater
correspondence in the shape of the input and output signal is
required.
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